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Objectives
To introduce CPU scheduling, which is the basis for multiprogrammed operating 
systems

To describe various CPU-scheduling algorithms
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Basic Concepts
Maximum CPU utilization obtained 
with multiprogramming

CPU–I/O Burst Cycle – Process 
execution consists of a cycle of CPU 
execution and I/O wait

CPU burst followed by I/O burst

CPU burst distribution is of main 
concern
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Histogram of CPU-burst Times
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CPU Scheduler
Short-term scheduler selects from among the processes in ready queue, and allocates 
the CPU to one of them

◦ Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

◦ Consider access to shared data

◦ Consider preemption while in kernel mode

◦ Consider interrupts occurring during crucial OS activities
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Dispatcher
Dispatcher module gives control of the CPU to the process 
selected by the short-term scheduler; this involves:
◦ switching context

◦ switching to user mode

◦ jumping to the proper location in the user program to restart that 
program

Dispatch latency – time it takes for the dispatcher to stop 
one process and start another running
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Scheduling Criteria
CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per time 
unit

Turnaround time – amount of time to execute a particular process

Waiting time – amount of time a process has been waiting in the ready 
queue

Response time – amount of time it takes from when a request was 
submitted until the first response is produced, not output  (for time-
sharing environment)
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Scheduling Algorithm Optimization 
Criteria
Max CPU utilization

Max throughput

Min turnaround time 

Min waiting time 

Min response time
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First- Come, First-Served (FCFS) 
Scheduling

Process Burst Time

P1 24

P2 3

P3 3 

Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

Waiting time for P1  = 0; P2  = 24; P3 = 27

Average waiting time:  (0 + 24 + 27)/3 = 17
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FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

P2 , P3 , P1 

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time:   (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect - short process behind long process

◦ Consider one CPU-bound and many I/O-bound processes
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Shortest-Job-First (SJF) 
Scheduling
Associate with each process the length of its next 
CPU burst
◦ Use these lengths to schedule the process with the 
shortest time

SJF is optimal – gives minimum average waiting 
time for a given set of processes
◦The difficulty is knowing the length of the next CPU 
request

◦Could ask the user
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Example of SJF
Process Burst Time

P1 6

P2 8

P3 7

P4 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 14



Determining Length of Next CPU 
Burst
Can only estimate the length – should be similar to the previous one
◦ Then pick process with shortest predicted next CPU burst

Can be done by using the length of previous CPU bursts, using 
exponential averaging

Commonly, α set to ½

Preemptive version called shortest-remaining-time-first
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Prediction of the Length of the 
Next CPU Burst
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Examples of Exponential 
Averaging
 =0
◦ n+1 = n

◦ Recent history does not count

 =1
◦ n+1 =  tn

◦ Only the actual last CPU burst counts

If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

+(1 -  )j  tn -j + …

+(1 -  )n +1 0

Since both  and (1 - ) are less than or equal to 1, each successive term has less 
weight than its predecessor
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Example of Shortest-remaining-
time-first
Now we add the concepts of varying arrival times and preemption to the analysis

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Preemptive SJF Gantt Chart

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec
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Priority Scheduling
A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority (smallest integer  highest 
priority)
◦ Preemptive

◦ Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted next CPU burst time

Problem  Starvation – low priority processes may never execute

Solution  Aging – as time progresses increase the priority of the process
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Example of Priority Scheduling
Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Priority scheduling Gantt Chart

Average waiting time = 8.2 msec
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Round Robin (RR)
Each process gets a small unit of CPU time (time quantum q), usually 
10-100 milliseconds.  After this time has elapsed, the process is 
preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time quantum is q, 
then each process gets 1/n of the CPU time in chunks of at most q time 
units at once.  No process waits more than (n-1)q time units.

Timer interrupts every quantum to schedule next process

Performance
◦ q large  FIFO

◦ q small  q must be large with respect to context switch, otherwise overhead is 
too high
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Example of RR with Time 
Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

The Gantt chart is: 

Typically, higher average turnaround than SJF, but better response

q should be large compared to context switch time

q usually 10ms to 100ms, context switch < 10 usec
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Time Quantum and Context Switch 
Time
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Turnaround Time Varies With The 
Time Quantum

80% of CPU bursts should be shorter than q
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Multilevel Queue
Ready queue is partitioned into separate queues, eg:

◦ foreground (interactive)

◦ background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm:

◦ foreground – RR

◦ background – FCFS

Scheduling must be done between the queues:

◦ Fixed priority scheduling; (i.e., serve all from foreground then from background).  
Possibility of starvation.

◦ Time slice – each queue gets a certain amount of CPU time which it can schedule amongst 
its processes; i.e., 80% to foreground in RR

◦ 20% to background in FCFS 
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Multilevel Queue Scheduling
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Multilevel Feedback Queue
A process can move between the various queues; aging can be 
implemented this way

Multilevel-feedback-queue scheduler defined by the following 
parameters:
◦ number of queues

◦ scheduling algorithms for each queue

◦ method used to determine when to upgrade a process

◦ method used to determine when to demote a process

◦ method used to determine which queue a process will enter when that process 
needs service
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Example of Multilevel Feedback 
Queue
Three queues: 
◦ Q0 – RR with time quantum 8 milliseconds

◦ Q1 – RR time quantum 16 milliseconds

◦ Q2 – FCFS

Scheduling
◦ A new job enters queue Q0 which is served FCFS
◦ When it gains CPU, job receives 8 milliseconds

◦ If it does not finish in 8 milliseconds, job is moved to queue Q1

◦ At Q1 job is again served FCFS and receives 16 additional 
milliseconds
◦ If it still does not complete, it is preempted and moved to queue Q2
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Thread Scheduling
Distinction between user-level and kernel-level threads

When threads supported, threads scheduled, not processes

Many-to-one and many-to-many models, thread library schedules 
user-level threads to run on LWP
◦ Known as process-contention scope (PCS) since scheduling competition is within 

the process

◦ Typically done via priority set by programmer

Kernel thread scheduled onto available CPU is system-contention 
scope (SCS) – competition among all threads in system
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Pthread Scheduling
API allows specifying either PCS or SCS during thread creation

◦ PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling

◦ PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

Can be limited by OS – Linux and Mac OS X only allow 
PTHREAD_SCOPE_SYSTEM

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 30



Pthread Scheduling API
#include <pthread.h> 

#include <stdio.h> 

#define NUM_THREADS 5 

int main(int argc, char *argv[]) { 

int i, scope;
pthread_t tid[NUM THREADS]; 

pthread_attr_t attr; 

/* get the default attributes */ 

pthread_attr_init(&attr); 

/* first inquire on the current scope */
if (pthread_attr_getscope(&attr, &scope) != 0) 

fprintf(stderr, "Unable to get scheduling scope\n"); 

else { 

if (scope == PTHREAD_SCOPE_PROCESS) 

printf("PTHREAD_SCOPE_PROCESS"); 

else if (scope == PTHREAD_SCOPE_SYSTEM) 

printf("PTHREAD_SCOPE_SYSTEM"); 

else
fprintf(stderr, "Illegal scope value.\n"); 

} 

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 31



Pthread Scheduling API
/* set the scheduling algorithm to PCS or SCS */ 

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); 

/* create the threads */
for (i = 0; i < NUM_THREADS; i++) 

pthread_create(&tid[i],&attr,runner,NULL); 

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++) 

pthread_join(tid[i], NULL); 

} 

/* Each thread will begin control in this function */ 

void *runner(void *param)
{ 

/* do some work ... */ 

pthread_exit(0); 

} 
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Multiple-Processor Scheduling
CPU scheduling more complex when multiple CPUs are available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing – only one processor accesses the system data 
structures, alleviating the need for data sharing

Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes 
in common ready queue, or each has its own private queue of ready processes

◦ Currently, most common

Processor affinity – process has affinity for processor on which it is currently 
running

◦ soft affinity

◦ hard affinity

◦ Variations including processor sets
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NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity
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Multiple-Processor Scheduling –
Load Balancing
If SMP, need to keep all CPUs loaded for efficiency

Load balancing attempts to keep workload evenly distributed

Push migration – periodic task checks load on each processor, and if 
found pushes task from overloaded CPU to other CPUs

Pull migration – idle processors pulls waiting task from busy processor
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Multicore Processors
Recent trend to place multiple processor cores on same 
physical chip

Faster and consumes less power

Multiple threads per core also growing
◦ Takes advantage of memory stall to make progress on another 

thread while memory retrieve happens
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Multithreaded Multicore System
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Real-Time CPU Scheduling
Can present obvious challenges

Soft real-time systems – no guarantee as to 
when critical real-time process will be 
scheduled

Hard real-time systems – task must be 
serviced by its deadline

Two types of latencies affect performance
1. Interrupt latency – time from arrival of interrupt to 

start of routine that services interrupt

2. Dispatch latency – time for schedule to take current 
process off CPU and switch to another
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Real-Time CPU Scheduling (Cont.)
Conflict phase of dispatch latency:
1. Preemption of any process running in 

kernel mode

2. Release by low-priority process of 
resources needed by high-priority 
processes
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Priority-based Scheduling
For real-time scheduling, scheduler must support preemptive, 
priority-based scheduling
◦ But only guarantees soft real-time

For hard real-time must also provide ability to meet deadlines

Processes have new characteristics: periodic ones require CPU at 
constant intervals
◦ Has processing time t, deadline d, period p

◦ 0 ≤ t ≤ d ≤ p

◦ Rate of periodic task is 1/p
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Rate Montonic Scheduling
A priority is assigned based on the inverse of its period

Shorter periods = higher priority;

Longer periods = lower priority

P1 is assigned a higher priority than P2.
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Missed Deadlines with Rate 
Monotonic Scheduling

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 42



Earliest Deadline First Scheduling 
(EDF)
Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;

the later the deadline, the lower the priority
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Proportional Share Scheduling
T shares are allocated among all processes in the system

An application receives N shares where N < T

This ensures each application will receive N / T of the total processor 
time
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End of Chapter 6


