
CSE 325: Operating Systems
3rd Year Computer Engineering
Zagazig University

SPRING 2018

LECTURE #7

These slides are adapted from the slides accompanying the text “Operating System Concepts slides”, http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html

Copyright Silberschatz, Galvin, and Gagne, 2013

Dr. Ahmed Amer Shahin

Dept . o f Computer & Systems Engineer ing

Chapter 6: CPU
Scheduling

Chapter 6: CPU Scheduling
Basic Concepts

Scheduling Criteria

Scheduling Algorithms

Thread Scheduling

Multiple-Processor Scheduling

Real-Time CPU Scheduling

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 3

Objectives
To introduce CPU scheduling, which is the basis for multiprogrammed operating
systems

To describe various CPU-scheduling algorithms

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 4

Basic Concepts
Maximum CPU utilization obtained
with multiprogramming

CPU–I/O Burst Cycle – Process
execution consists of a cycle of CPU
execution and I/O wait

CPU burst followed by I/O burst

CPU burst distribution is of main
concern

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 5

Histogram of CPU-burst Times

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 6

CPU Scheduler
Short-term scheduler selects from among the processes in ready queue, and allocates
the CPU to one of them

◦ Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

◦ Consider access to shared data

◦ Consider preemption while in kernel mode

◦ Consider interrupts occurring during crucial OS activities

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 7

Dispatcher
Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
◦ switching context

◦ switching to user mode

◦ jumping to the proper location in the user program to restart that
program

Dispatch latency – time it takes for the dispatcher to stop
one process and start another running

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 8

Scheduling Criteria
CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per time
unit

Turnaround time – amount of time to execute a particular process

Waiting time – amount of time a process has been waiting in the ready
queue

Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 9

Scheduling Algorithm Optimization
Criteria
Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 10

First- Come, First-Served (FCFS)
Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 11

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect - short process behind long process

◦ Consider one CPU-bound and many I/O-bound processes

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 12

Shortest-Job-First (SJF)
Scheduling
Associate with each process the length of its next
CPU burst
◦ Use these lengths to schedule the process with the
shortest time

SJF is optimal – gives minimum average waiting
time for a given set of processes
◦The difficulty is knowing the length of the next CPU
request

◦Could ask the user

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 13

Example of SJF
Process Burst Time

P1 6

P2 8

P3 7

P4 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 14

Determining Length of Next CPU
Burst
Can only estimate the length – should be similar to the previous one
◦ Then pick process with shortest predicted next CPU burst

Can be done by using the length of previous CPU bursts, using
exponential averaging

Commonly, α set to ½

Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1
1 nnn

t

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 15

Prediction of the Length of the
Next CPU Burst

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 16

Examples of Exponential
Averaging
 =0
◦ n+1 = n

◦ Recent history does not count

 =1
◦ n+1 = tn

◦ Only the actual last CPU burst counts

If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

+(1 -)j tn -j + …

+(1 -)n +1 0

Since both and (1 -) are less than or equal to 1, each successive term has less
weight than its predecessor

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 17

Example of Shortest-remaining-
time-first
Now we add the concepts of varying arrival times and preemption to the analysis

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Preemptive SJF Gantt Chart

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 18

Priority Scheduling
A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority (smallest integer highest
priority)
◦ Preemptive

◦ Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted next CPU burst time

Problem Starvation – low priority processes may never execute

Solution Aging – as time progresses increase the priority of the process

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 19

Example of Priority Scheduling
Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Priority scheduling Gantt Chart

Average waiting time = 8.2 msec

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 20

Round Robin (RR)
Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n-1)q time units.

Timer interrupts every quantum to schedule next process

Performance
◦ q large FIFO

◦ q small q must be large with respect to context switch, otherwise overhead is
too high

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 21

Example of RR with Time
Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

q should be large compared to context switch time

q usually 10ms to 100ms, context switch < 10 usec

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 22

Time Quantum and Context Switch
Time

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 23

Turnaround Time Varies With The
Time Quantum

80% of CPU bursts should be shorter than q

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 24

Multilevel Queue
Ready queue is partitioned into separate queues, eg:

◦ foreground (interactive)

◦ background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm:

◦ foreground – RR

◦ background – FCFS

Scheduling must be done between the queues:

◦ Fixed priority scheduling; (i.e., serve all from foreground then from background).
Possibility of starvation.

◦ Time slice – each queue gets a certain amount of CPU time which it can schedule amongst
its processes; i.e., 80% to foreground in RR

◦ 20% to background in FCFS

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 25

Multilevel Queue Scheduling

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 26

Multilevel Feedback Queue
A process can move between the various queues; aging can be
implemented this way

Multilevel-feedback-queue scheduler defined by the following
parameters:
◦ number of queues

◦ scheduling algorithms for each queue

◦ method used to determine when to upgrade a process

◦ method used to determine when to demote a process

◦ method used to determine which queue a process will enter when that process
needs service

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 27

Example of Multilevel Feedback
Queue
Three queues:
◦ Q0 – RR with time quantum 8 milliseconds

◦ Q1 – RR time quantum 16 milliseconds

◦ Q2 – FCFS

Scheduling
◦ A new job enters queue Q0 which is served FCFS
◦ When it gains CPU, job receives 8 milliseconds

◦ If it does not finish in 8 milliseconds, job is moved to queue Q1

◦ At Q1 job is again served FCFS and receives 16 additional
milliseconds
◦ If it still does not complete, it is preempted and moved to queue Q2

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 28

Thread Scheduling
Distinction between user-level and kernel-level threads

When threads supported, threads scheduled, not processes

Many-to-one and many-to-many models, thread library schedules
user-level threads to run on LWP
◦ Known as process-contention scope (PCS) since scheduling competition is within

the process

◦ Typically done via priority set by programmer

Kernel thread scheduled onto available CPU is system-contention
scope (SCS) – competition among all threads in system

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 29

Pthread Scheduling
API allows specifying either PCS or SCS during thread creation

◦ PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling

◦ PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

Can be limited by OS – Linux and Mac OS X only allow
PTHREAD_SCOPE_SYSTEM

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 30

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

int i, scope;
pthread_t tid[NUM THREADS];

pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init(&attr);

/* first inquire on the current scope */
if (pthread_attr_getscope(&attr, &scope) != 0)

fprintf(stderr, "Unable to get scheduling scope\n");

else {

if (scope == PTHREAD_SCOPE_PROCESS)

printf("PTHREAD_SCOPE_PROCESS");

else if (scope == PTHREAD_SCOPE_SYSTEM)

printf("PTHREAD_SCOPE_SYSTEM");

else
fprintf(stderr, "Illegal scope value.\n");

}

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 31

Pthread Scheduling API
/* set the scheduling algorithm to PCS or SCS */

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)
{

/* do some work ... */

pthread_exit(0);

}

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 32

Multiple-Processor Scheduling
CPU scheduling more complex when multiple CPUs are available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing – only one processor accesses the system data
structures, alleviating the need for data sharing

Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes
in common ready queue, or each has its own private queue of ready processes

◦ Currently, most common

Processor affinity – process has affinity for processor on which it is currently
running

◦ soft affinity

◦ hard affinity

◦ Variations including processor sets

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 33

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 34

Multiple-Processor Scheduling –
Load Balancing
If SMP, need to keep all CPUs loaded for efficiency

Load balancing attempts to keep workload evenly distributed

Push migration – periodic task checks load on each processor, and if
found pushes task from overloaded CPU to other CPUs

Pull migration – idle processors pulls waiting task from busy processor

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 35

Multicore Processors
Recent trend to place multiple processor cores on same
physical chip

Faster and consumes less power

Multiple threads per core also growing
◦ Takes advantage of memory stall to make progress on another

thread while memory retrieve happens

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 36

Multithreaded Multicore System

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 37

Real-Time CPU Scheduling
Can present obvious challenges

Soft real-time systems – no guarantee as to
when critical real-time process will be
scheduled

Hard real-time systems – task must be
serviced by its deadline

Two types of latencies affect performance
1. Interrupt latency – time from arrival of interrupt to

start of routine that services interrupt

2. Dispatch latency – time for schedule to take current
process off CPU and switch to another

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 38

Real-Time CPU Scheduling (Cont.)
Conflict phase of dispatch latency:
1. Preemption of any process running in

kernel mode

2. Release by low-priority process of
resources needed by high-priority
processes

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 39

Priority-based Scheduling
For real-time scheduling, scheduler must support preemptive,
priority-based scheduling
◦ But only guarantees soft real-time

For hard real-time must also provide ability to meet deadlines

Processes have new characteristics: periodic ones require CPU at
constant intervals
◦ Has processing time t, deadline d, period p

◦ 0 ≤ t ≤ d ≤ p

◦ Rate of periodic task is 1/p

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 40

Rate Montonic Scheduling
A priority is assigned based on the inverse of its period

Shorter periods = higher priority;

Longer periods = lower priority

P1 is assigned a higher priority than P2.

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 41

Missed Deadlines with Rate
Monotonic Scheduling

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 42

Earliest Deadline First Scheduling
(EDF)
Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;

the later the deadline, the lower the priority

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 43

Proportional Share Scheduling
T shares are allocated among all processes in the system

An application receives N shares where N < T

This ensures each application will receive N / T of the total processor
time

Lec#7 - Spring 2018 CSE 325: OPERATING SYSTEMS 44

End of Chapter 6

