CSE 321b Computer Organization (2) (2) تنظيم الحاسب

3rd year, Computer Engineering Spring 2018 Lecture #8

Dr. Ahmed Amer Shahin

http://www.aashahine.faculty.zu.edu.eg

Credits to Dr. Ahmed Abdul-Monem & Dr. Hazem Shehata for the slides

Chapter 10. Computer Arithmetic (*Cont.***)**

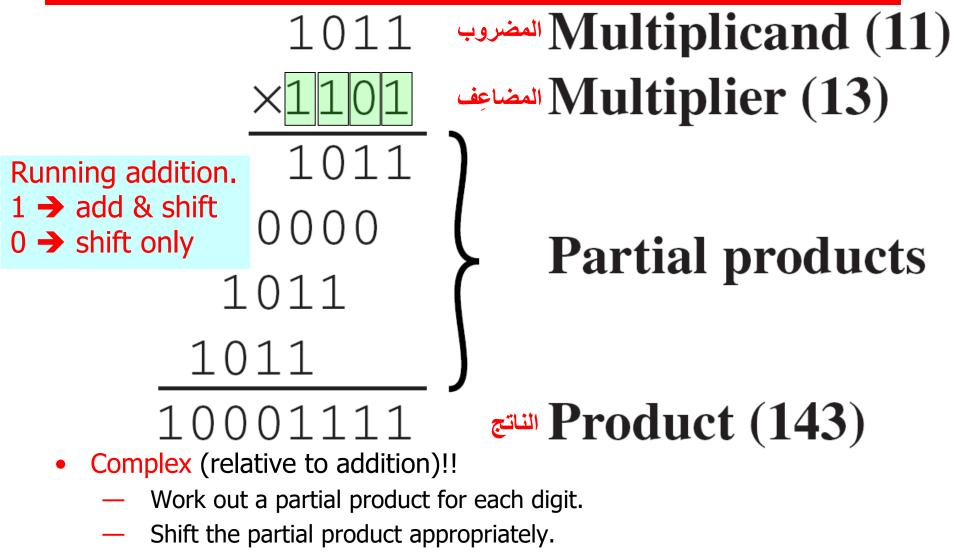
Outline

- Integer Representation

 Sign-Magnitude, Two's Complement, Biased
- Integer Arithmetic
 - -Negation, Addition, Subtraction
 - -Multiplication, Division
- Floating-Point Representation

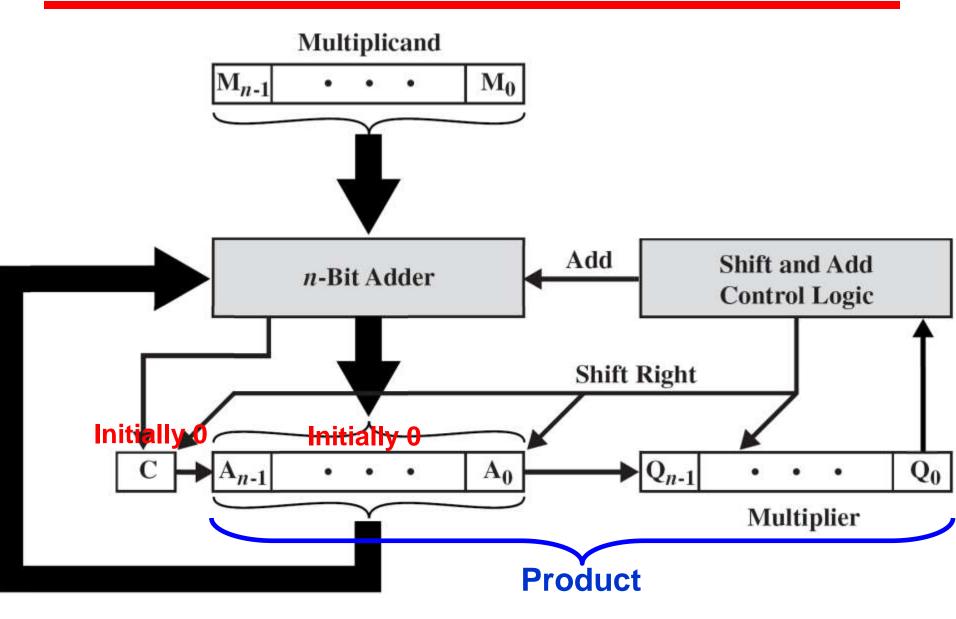
 —IEEE 754
- Floating-Point Arithmetic
 - -Addition, Subtraction
 - -Multiplication, Division
 - -Rounding

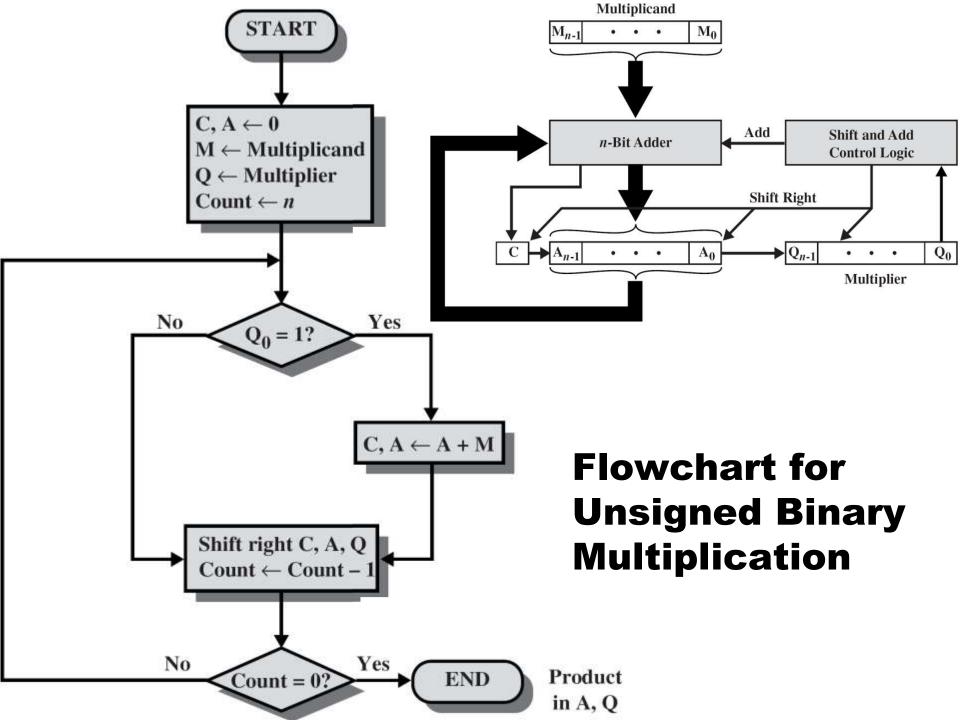
Multiplication Example



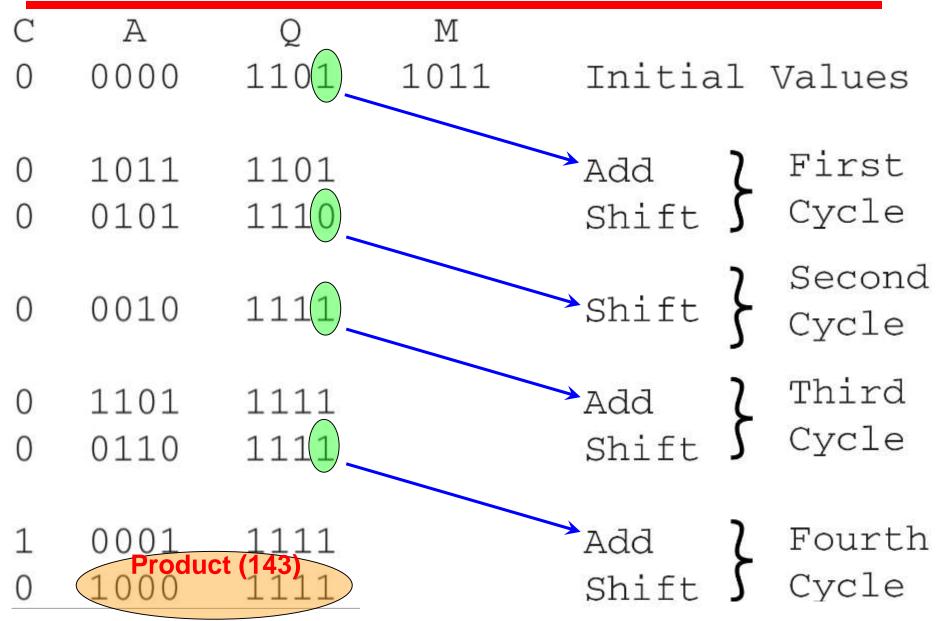
- Add partial products.
- Generate double-length result.

Unsigned Binary Multiplication





Execution of Example



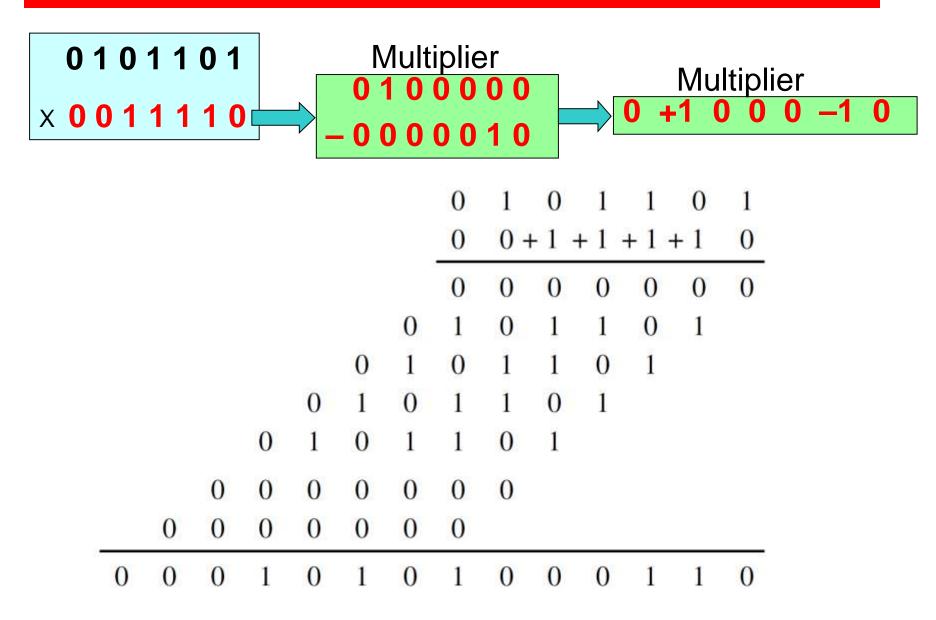
Signed Binary Multiplication

- The straight forward multiplication algorithm doesn't work with signed numbers!!
- Evidence: In the previous example, suppose that M & Q are interpreted as signed numbers:
 - M = (1011)₂ which represents (-5)₁₀
 - $Q = (1101)_2$ which represents $(-3)_{10}$
 - Applying the algorithm results in a product value of (1000 1111)₂ which represents (-113)₁₀
 - This result is wrong! Correct value is supposed to be (+15)₁₀!!!!

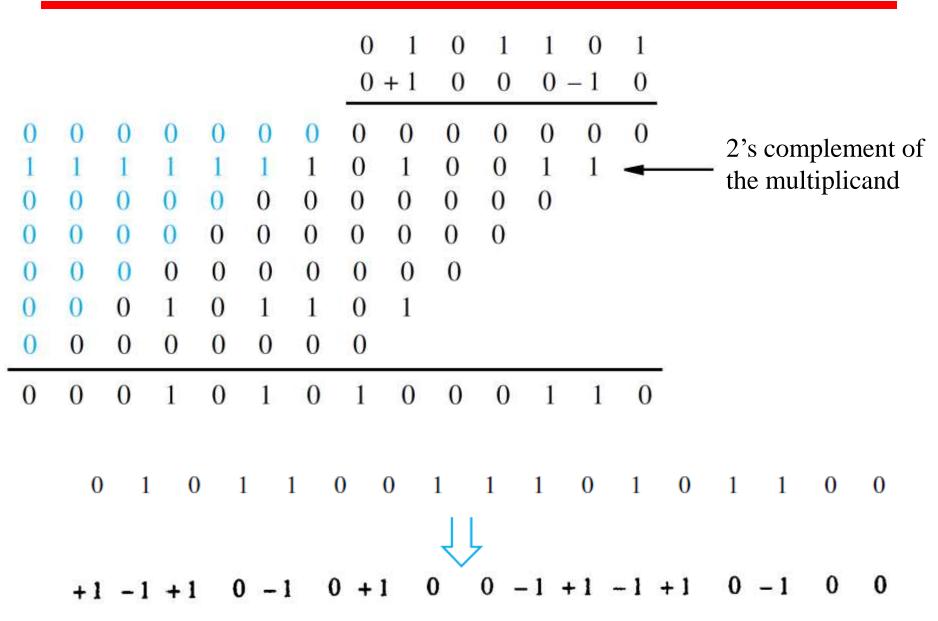
Signed Multiplication Algorithm #1

- 1. Convert multiplicand (M) & multiplier (Q) to their absolute (positive) values |M| & |Q|.
- Run the unsigned multiplication algorithm on |M| & |Q| to obtain the final product (P).
- 3. Adjust the sign of P (by 2's complementation where needed) according to the following rule:
 > sign(P) = sign(M) X sign(Q)

Signed Multiplication Algorithm #2 (Booth's Algorithm)

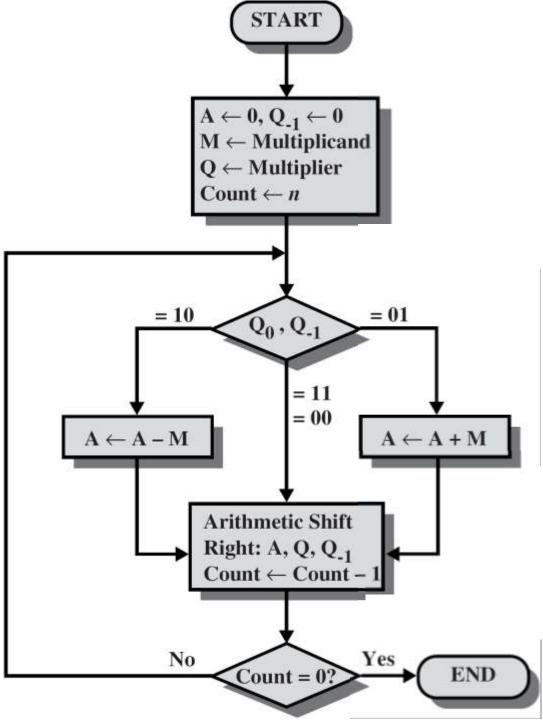


Booth's Algorithm – Example

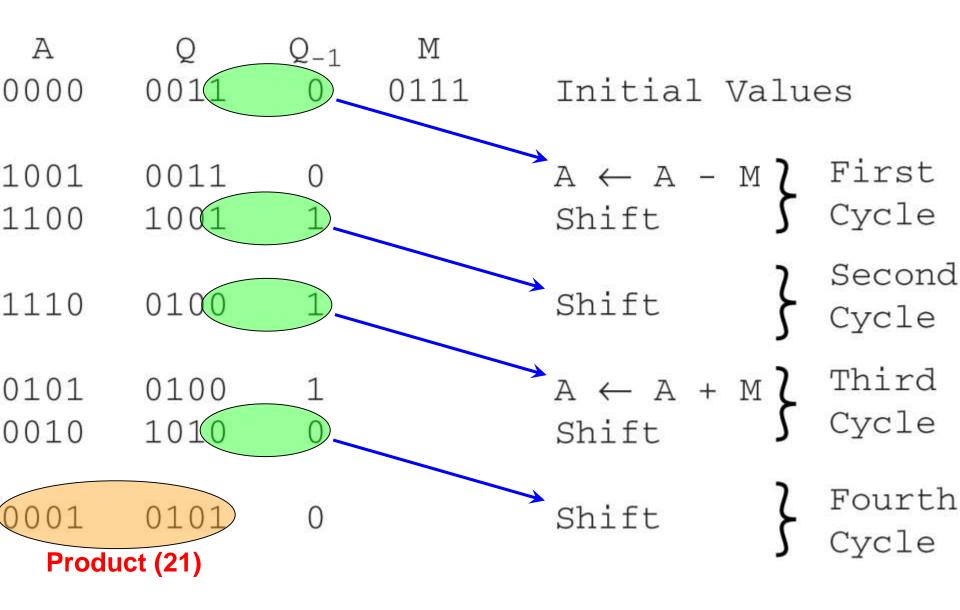


Mu	ıltiplier	Version of multiplicand				
Bit i	Bit i–1	selected by bit i				
0	0	0 × M				
0	1	+1 × M				
1	0	-1 × M				
1	1	0 × M				

Booth's Algorithm Flowchart



Example on Booth's Algorithm



Booth's Algorithm, -ve Multiplier

1 0 0 1 0 - 1 + 1 - 1 = 0()()()()0 0 ()1 0 1 1 0 0 1 0 (-78)

Booth's Algorithm - Cases

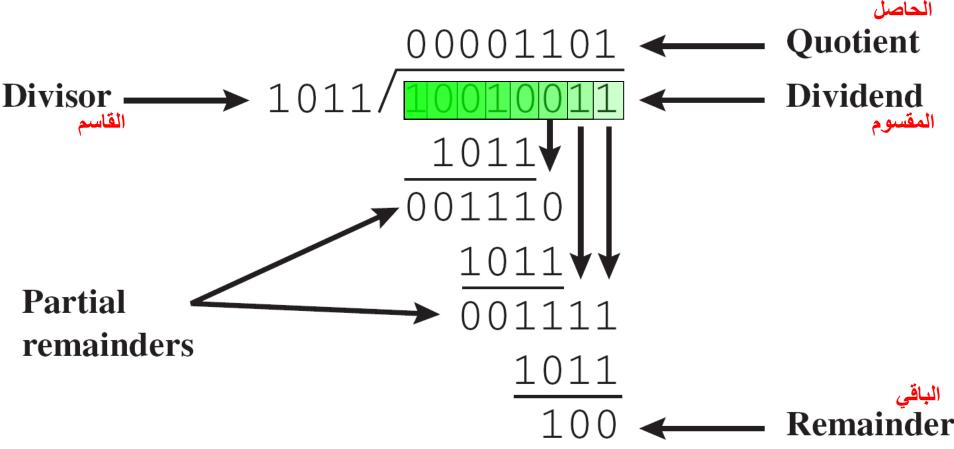
Worst-case Multiplier	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1
Ordinary Multiplier	1	1	0	0	0	1	0	1	1	0	1	1	1	1	0	0
	0	-1	0	0	+1	-1	+1	ب 0	- 1	+1	0	0	0	-1	0	0
Good Multiplier	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	1
	0	0	+1	0	0	0	0	- 1	С О	0	0	0	+1	0	0	-1

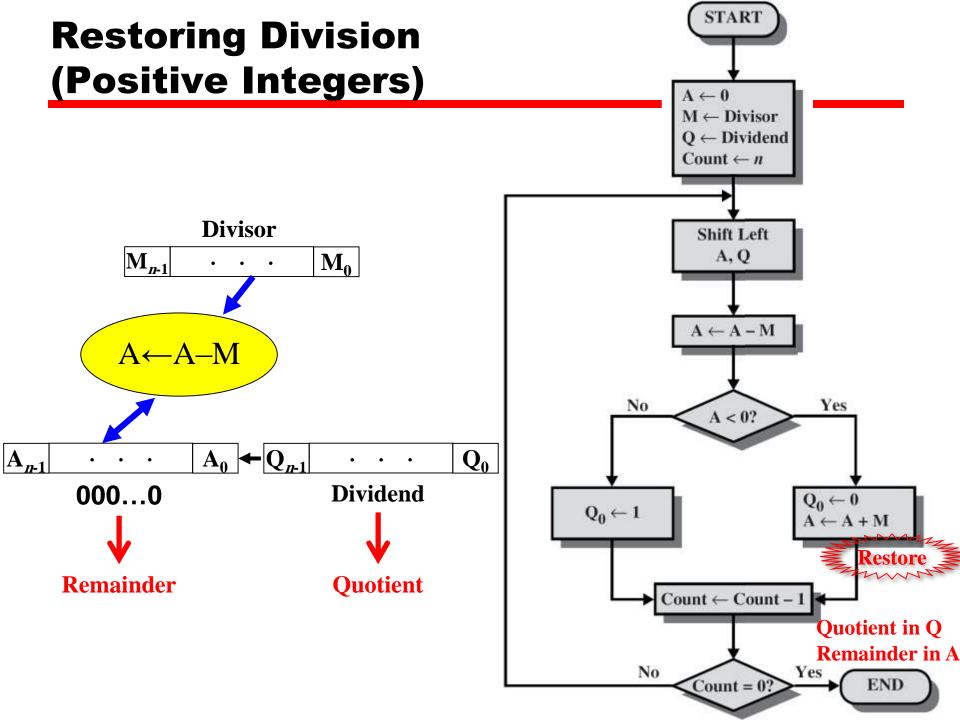
Booth's Algorithm – Pros:

- Treats +ve and -ve multipliers uniformly.
- Use fewer additions if the multiplier has large blocks of 1's.
- On average, has the same efficiency as the normal algorithm.

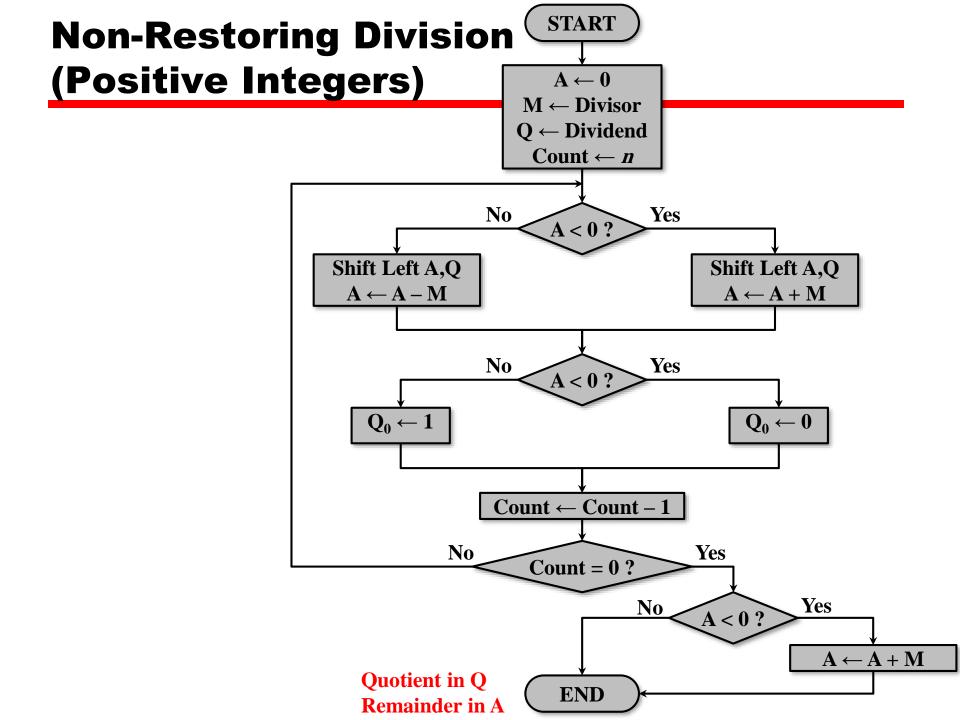
Division

- More complex than multiplication.
- Negative numbers are really bad!
- Based on long division.

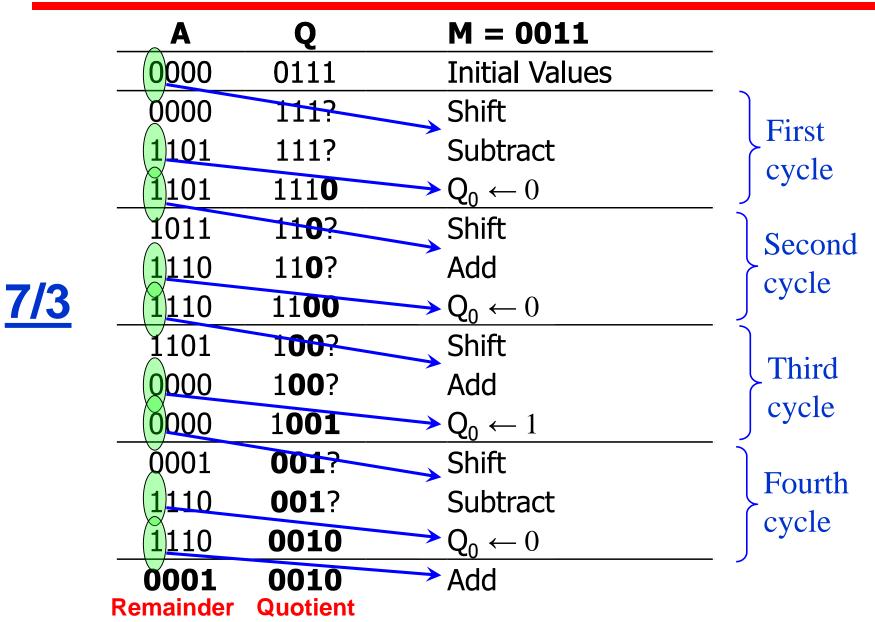




Restoring Divisi	on ^A	Q	M = 0011
Example	0000	0111	Initial Value
7/3	0000 <u>1101</u> 0000	1110	Shift Subtract Restore
<u> </u>	0001 1110 0001	1100	Shift Subtract → Restore
	0011 0000 0000	1000	Shift Subtract Set $Q_0 = \int_{0}^{1} \frac{Third}{cycle}$
Remain	0001	0010 Quotient	Shift Subtract Restore



Non-Restoring Division Example



Dealing with Signed Integers

- Given a dividend (D) and divisor (V) where both are signed integers in the 2's complement representation.
- Division can be carried out as follows:
 - 1. Convert D & V to their absolute (+ve) values |D| & |V|.
 - Run either restoring or non-restoring division on |D| & |V| to obtain the quotient (Q) and the remainder (R).
 - **3.** Adjust the sign of Q and R (by 2's complementation where needed) according to the following rules:
 - > sign(Q) = sign(D) X sign(V)
 - > sign(R) = sign(D)

Reading Material

Stallings, Chapter 10: —Pages 331 – 341