CSE 321b

Computer Organization (2) تنظيم الحاسب (2)

$3^{\text {rd }}$ year, Computer Engineering Spring 2018 Lecture \#7

Dr. Ahmed Amer Shahin

http://www.aashahine.faculty.zu.edu.eg
Credits to Dr. Ahmed Abdul-Monem \& Dr. Hazem Shehata for the slides

Adminstrivia

- Lecture include material from another textbook: -"Computer Organization and Embedded Systems", C. Hamacher, Z. Vranesic, S. Zaky, N. Manjikian (6 ${ }^{\text {th }}$ Ed.)

Chapter 10. Computer Arithmetic

Outline

- Integer Representation
—Sign-Magnitude, Two's Complement, Biased
- Integer Arithmetic
—Negation, Addition, Subtraction
-Multiplication, Division
- Floating-Point Representation
-IEEE 754
- Floating-Point Arithmetic
-Addition, Subtraction
-Multiplication, Division
—Rounding

Arithmetic \& Logic Unit (ALU)

- The unit that does all the calculations!
- Everything else in computer is there to bring data to ALU and take results back out.
- It can handle both integers \& real (floating point) numbers.
-Note: In the past, Floating-Point Unit (FPU) used to be separate from ALU (off-chip) \rightarrow math co-processor!!

Integer Representation

- General-case number: -548.923
- Only have 0 \& 1 to represent everything!
-No minus sign!!
—No radix point (period)!!!
- Unsigned (i.e., always positive) integers:
- Straightforward \rightarrow represent integer value in binary!
-An n-bit word can represent the numbers: $0 \rightarrow 2^{n}-1$
-Ex.: (41) ${ }_{10}$ represented using 8-bits as "00101001".
- Signed integers:
-Not straightforward!
- Sign-magnitude representation
- Biased representation
- Two's complement representation

Representations of 4-Bit Signed Integers

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation	Biased Representation
$(+8$	(-	(-	(1111
+7	0111	0111	1110
+6	0110	0110	1101
ㅇ. +5	0101	0101	1100
安 $2+4$	- ${ }^{\text {N }} 0100$	- ${ }^{(10100}$	1011
+ +3	0011	0011	ง 1010
+2	0010	0010	$\begin{array}{l\|l} \hline & 1001 \\ \hline \end{array}$
+1	0001	0001	+ 1000
$(+0$ -	0000 入	$0000 \sim$	- 0111 N
(-0	(1000	-	-
-1	1001	1111	- 0110
-2	$\times^{*}{ }_{1011}{ }^{2}$	- ${ }_{\text {¢ }} \begin{aligned} & 1110 \\ & 1101 \\ & 1100\end{aligned}$	(0101
- -3			0100
준	+ 1100		0011
- ${ }^{-5}$	¢ 1101		0010
-6	- 1110		0001
-7	1111		0000
(-8)	(-	${ }_{1000}$	(-N

Sign-Magnitude Representation

- Left most bit is sign bit.
>"0" means positive. "1" means negative.
- Rest of the bits represent the magnitude.
- Example:

$$
\begin{aligned}
& >+18=00010010 \\
& >-18=10010010
\end{aligned}
$$

- Range of n-bit Numbers: $-\left(2^{n-1}-1\right) \rightarrow 2^{n-1}-1$.
- Problems:
$>$ Need to consider both sign \& magnitude in arithmetic.
$>$ Two representations of zero (+0 and -0)
- More difficult to test for 0 !
- One wasted bit combination!!

Biased Representation

- A bias is added to the binary value of the number.
$>$ Bias $=2^{n-1}-1$ (if numbers are represented by n bits).
- Example:

$$
\begin{aligned}
& >+18=00010010+01111111=10010001 \\
& >-18=-00010010+01111111=01101101
\end{aligned}
$$

- Range of n-bit Numbers: $-\left(2^{n-1}-1\right) \Rightarrow 2^{n-1}$.
- Problems:
$>$ Need to compensate for the bias in arithmetic (by adding/subtracting a value to/from result)!!
$>$ Example: Suppose numbers are represented using 4 bits.

$$
2_{10}+1_{10}=1001+1000=10001 \rightarrow \text { Wrong result!! }
$$

$$
\text { Result is biased twice } \rightarrow \text { subtract one bias from the result }
$$

$$
10001-0111=1010=3_{10}
$$

Two's Complement Representation

- Like sign-magnitude representation, leftmost bit is used as a sign bit.
- Differs from sign-magnitude representation in how the remaining bits are interpreted.
- Positive number: convert to binary
- Negative number: 2's complement
- Example: 8-bit 2's complement representation
$+3=\underline{00000011}$

$$
+2=\underline{0} 0000010
$$

$$
+1=\underline{0} 0000001
$$

$$
\begin{aligned}
& -1=11111111 \\
& -2=\underline{1} 1111110 \\
& -3=\underline{1} 1111101
\end{aligned}
$$

$$
+0=\underline{0} 0000000
$$

n-bit Two's Complement Representation

- Suppose we want to represent a set of signed integer numbers using n bits.
- Then, we have 2^{n} different combinations \rightarrow we can represent 2^{n} different numbers.

1. Represent the number: 0 by the combination: " 00 ... 0 ".
> We now have $2^{n}-1$ different combinations left.
2. Represent each positive number: +A by a combination (whose value is): $\mathrm{A} \rightarrow$ positive integers: $1,2, \ldots, 2^{n-1}-1$ are represented by combinations: $1,2, . ., 2^{n-1}-1$.
3. Represent each negative number: -A by a combination (whose value is): $2^{n}-\mathrm{A} \rightarrow$ negative integers: $-2^{n-1},-2^{n-1}+1, \ldots,-1$ are represented by combinations: $2^{n-1}, 2^{n-1}+1, \ldots, 2^{n}-1$.

- Range of representable numbers is: $-\mathbf{2}^{\mathrm{n}-1} \rightarrow 2^{\mathrm{n}-1}-1$.

Characteristics of 2's Comp. Rep. \& Arithmetic

Consider n-bit 2's complement representation

Range	-2^{n-1} to $2^{n-1}-1$				
Number of Representations of Zero	One	$	$	Equivalent to: $\mathbf{2}^{n}-\mathbf{x}_{2}$	Take the Boolean complement of each bit of the corresponding positive number, then add 1 to the resulting bit pattern viewed as an unsigned integer.
:---	:---				
Expation	Add additional bit positions to the left and fill in with the value of the original sign bit.				
Overflow Rule	If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the result has the opposite sign.				
Subtraction Rule	To subtract B from A, take the twos complement of B and add it to A.				

Benefits

- One representation of zero.
- Arithmetic works easily (see later).
- Negating is fairly easy
$-3_{10}=00000011$
- Boolean (one's) complement gives 11111100
- Add 1 to LSB 11111101
- This is equivalent to $2^{8}-3=253=11111101$

2's complement of 3

Conversion between 2's Comp. \& Decimal

-128	64	32	16	8	4	2	1
1	0	0	0	0	0	1	1
-128	$+2+1$						

Result obtained using value box is correct because:
\rightarrow Sign bit is 1
\rightarrow Number $=-\left(2^{\prime}\right.$ s comp. of 10000011)

$$
\begin{aligned}
& =-\left(2^{8}-10000011\right) \\
& =-125
\end{aligned}
$$

Conversion Between Lengths

- Positive numbers \rightarrow pack with leading zeros
- +18 = 00010010
- $+18=0000000000010010$
- Negative numbers \rightarrow pack with leading ones

$$
\begin{array}{ll}
\text { - }-18= & 11101110 \\
\text { - }-18=111111111101110
\end{array}
$$

- i.e. pack with MSB (sign bit) \rightarrow Sign extension

Addition and Subtraction

- Addition \rightarrow Normal binary addition.
> Monitor sign bit for overflow.
- Subtraction \rightarrow Take two's complement of subtrahend and add to minuend
$>\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$
- So we only need addition and complement circuits.

Why Addition of Numbers in 2's Comp. Works?

- Two positive number
- Normal binary addition if no overflow.
- Two negative numbers: -A and -B
- Represent -A as 2^{n} - A
- Represent -B as $2^{\mathrm{n}}-\mathrm{B} \quad$ Extra bit \rightarrow ignored
- Do the addition: Result $=\left(2^{2}-A\right)+\left(2^{n}-B\right)$

2's comp. of $(A+B) \rightarrow-(A+B)$

- One positive and one negative: A and -B
- Represent A as A
- Represent $-B$ as $2^{n}-B \quad$ 2's comp. of $(-A+B) \rightarrow(A-B)$
- Result $=A+2^{n}-B=2^{n}-(-A+B)$

Addition of Numbers in 2's Comp. Rep.

4-bit 2's comp. representation

$$
\begin{array}{rlrl}
1001 & =-7 & 1100 & =-4 \\
+\frac{0101}{1110} & =-5 & +10100 & =4 \\
0011 & =3 & 10000 & =0 \\
+\frac{0100}{0111} & =4 & 1100 & =-4 \\
0101 & =5 & +1111 & =-1 \\
+\frac{11011}{}=-5 \\
+0100 & =4 & 1001 & =-7 \\
+1001 & =\text { Overflow } & +1010 & =-6 \\
10011 & =\text { Overflow }
\end{array}
$$

Geometric Depiction of 2's Comp. Integers

Binary Addition/Subtraction Logic Circuit.

- Addition \rightarrow Add/sub control $=0$.
- Subtraction \rightarrow Add/sub control $=1$

1-Bit Addition (Full Adder)

x_{i}	y_{i}	Carry-in c_{i}	Sum s_{i}	Carry-out c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

At the stage i : Input:
 x_{i} is $f^{\text {in }}$ bit of x y_{i} is ${ }^{\text {th }}$ bit of y c_{i} is carry-in from stage F 1

$$
\begin{aligned}
s_{i} & =\bar{x}_{i} \bar{y}_{i} c_{i}+\bar{x}_{i} y_{i} \bar{c}_{i}+x_{i} \bar{y}_{i} \bar{c}_{i}+x_{i} y_{i} c_{i}=x_{i} \oplus y_{i} \oplus c_{i} \\
c_{i+1} & =y_{i} c_{i}+x_{i} c_{i}+x_{i} y_{i}
\end{aligned}
$$

Example:

Legend for stage i

Addition Logic for a Single Stage

Full Adder (FA): Symbol for the complete circuit for a single stage of addition.

An \boldsymbol{n}-bit Ripple-Carry Adder

- Cascade n full adder (FA) blocks to form a n-bit adder.
- Carries propagate or ripple through this cascade $\rightarrow \underline{n}$-bit ripple carry adder.
- Carry-in c_{0} into the LSB position provides a convenient way to perform subtraction.

Cascade of $\boldsymbol{k} \boldsymbol{n}$-bit Adders

- $k n$-bit numbers can be added by cascading $k n$-bit adders.
- Each n-bit adder forms a block, so this is cascading of blocks.
- Carries ripple or propagate through blocks $\boldsymbol{\rightarrow}$ Blocked Ripple Carry Adder.

Computing the Add Time

Consider $0^{\text {th }}$ stage:

$\cdot c_{1}$ is available after 2 gate delays.
$\cdot s_{1}$ is available after 1 gate delay.

Computing the Add Time (cont.)

Cascade of 4 Full Adders, or a 4-bit adder

- s_{0} available after 1 gate delay, c_{1} available after 2 gate delays.
- s_{1} available after 3 gate delays, c_{2} available after 4 gate delays.
- s_{2} available after 5 gate delays, c_{3} available after 6 gate delays.
- s_{3} available after 7 gate delays, C_{4} available after 8 gate delays.

> For an n-bit ripple-carry adder: s_{n-1} is available after $2 n-1$ gate delays c_{n} is available after $2 n$ gate delays.

Fast Addition

Recall the equations:

$$
\begin{aligned}
& s_{i}=x_{i} \oplus y_{i} \oplus c_{i} \\
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
\end{aligned}
$$

Second equation can be written as:

$$
c_{i+1}=x_{i} y_{i}+\left(x_{i} \oplus y_{i}\right) c_{i}
$$

We can write:

$$
\begin{aligned}
& c_{i+1}=G_{i}+P_{i} c_{i} \\
& \text { where } G_{i}=x_{i} y_{i} \text { and } P_{i}=x_{i} \oplus y_{i}
\end{aligned}
$$

- G_{i} is called generate function.
- P_{i} is called propagate function.
- G_{i} and P_{i} are computed only from x_{i} and y_{i} and not c_{i}
\rightarrow they can be computed in one gate delay from X and Y.

Carry-Lookahead Adder - Main Idea

$$
\begin{aligned}
& c_{i+1}=G_{i}+P_{i} c_{i} \\
& c_{i}=G_{i-1}+P_{i-1} c_{i-1} \\
& \Rightarrow c_{i+1}=G_{i}+P_{i}\left(G_{i-1}+P_{i-1} c_{i-1}\right)
\end{aligned}
$$

continuing

$$
\Rightarrow c_{i+1}=G_{i}+P_{i}\left(G_{i-1}+P_{i-1}\left(G_{i-2}+P_{i-2} c_{i-2}\right)\right)
$$

until

$$
c_{i+1}=G_{i}+P_{i} G_{i-1}+P_{i} P_{i-1} G_{i-2}+. .+P_{i} P_{i-1} . . P_{1} G_{0}+P_{i} P_{i-1} \ldots P_{0} c_{0}
$$

- All carries can be obtained 3 gate delays from x, y and c_{0}.
- One gate delay for P_{i} and G_{i}
- Two gate delays in the AND-OR circuit for c_{i+1}
- All sums can be obtained 1 gate delay after the carries are computed.
- Independent of n, n-bit addition requires only 4 gate delays.
- This is called Carry Lookahead adder.

Carry-Lookahead adder - Basic Cell

Bit-stage cell

Carry-Lookahead Adder - Structure

4-bit carry-lookahead adder

Carry-Lookahead adder - Limitation

- Performing n-bit addition in 4 gate delays independent of n is good only theoretically because of fan-in constraints!

$$
c_{i+1}=G_{i}+P_{i} G_{i-1}+P_{i} P_{i-1} G_{i-2}+\ldots+P_{i} P_{i-1} \ldots P_{1} G_{0}+P_{i} P_{i-1} \ldots P_{0} c_{o}
$$

- Last AND gate and OR gate require a fan-in of ($n+1$) for an n-bit adder.
-For a 4-bit adder ($n=4$) fan-in of 5 is required. -Practical limit for most gates!
- In order to add operands longer than 4 bits, we can cascade 4-bit Carry-Lookahead adders.
\rightarrow Blocked Carry-Lookahead adder.

Blocked Carry-Lookahead adder - Main Idea

- Carry-out from a 4-bit block can be given as:

$$
c_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0}
$$

- Rewrite this as: $c_{4}=G_{0}^{I}+P_{0}^{I} c_{0}$
-Where: $G_{0}^{I}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}$
-And: $P_{0}^{I}=P_{3} P_{2} P_{1} P_{0}$
-Known as: high-order generate/propagate functions.
- To build a 16-bit blocked carry-lookahead adder:
-Use a carry-lookahead logic block to connect the highorder generate/propagate functions from 4 4-bit carry-lookahead adders such that:

$$
c_{16}=G_{3}^{I}+P_{3}^{I} G_{2}^{I}+P_{3}^{I} P_{2}^{I} G_{1}^{I}+P_{3}^{I} P_{2}^{I} P_{1}^{I} G_{0}^{I}+P_{3}^{I} P_{2}^{I} P_{1}^{I} P_{0}^{I} c_{0}
$$

Blocked Carry-Lookahead adder - Structure

- Time taken to produce s_{15}

$$
\begin{aligned}
=1 & (X, Y \rightarrow P, G)+2\left(P, G \rightarrow P^{l}, G^{\prime}\right) \\
& +2\left(P^{l}, G^{t} \rightarrow c_{12}\right)+2\left(c_{12} \rightarrow c_{15}\right) \\
& +1\left(c_{15} \rightarrow s_{15}\right)=8 \text { gate delays }
\end{aligned}
$$

Reading Material

- Stallings, Chapter 10:
—Pages 320-331
- Hamacher, Chapter 9:
—Pages 336-344

