CSE 321b
Computer Organization (2)

(2) wlal) ptas

Spring 2018
Lecture #7/

Dr. Ahmed Amer Shahin

http://www.aashahine.faculty.zu.edu.eg
Credits to Dr. Ahmed Abdul-Monem & Dr. Hazem Shehata for the slides

http://www.aashahine.faculty.zu.edu.eg/

Adminstrivia

e Lecture include material from another textbook:

—"Computer Organization and Embedded Systems”’,
C. Hamacher, Z. Vranesic, S. Zaky, N. Manjikian (6t
Ed.)

Chapter 10. Computer Arithmetic

Outline

e Integer Representation
—Sign-Magnitude, Two’s Complement, Biased

e Integer Arithmetic
—Negation, Addition, Subtraction
—Multiplication, Division

e Floating-Point Representation
—IEEE 754

e Floating-Point Arithmetic
—Addition, Subtraction
—Multiplication, Division
—Rounding

Arithmetic & Logic Unit (ALU)

e The unit that does all the calculations!

e Everything else in computer is there to bring
data to ALU and take results back out.

e It can handle both integers & real (floating point)
numbers.

—Note: In the past, Floating-Point Unit (FPU) used to be
separate from ALU (off-chip) = math co-processor!!

Operation ‘.s;."“‘_r;’,' : Flags overflow,
Signals . ; carry, ...
ALU
Operand Result
w Registers »' Registers

Integer Representation

e General-case number: —548.923

e Only have 0 & 1 to represent everything!

—No minus sign!!
—No radix point (period)!!!

e Unsigned (i.e., always positive) integers:
—Straightforward =» represent integer value in binary!
—An n-bit word can represent the numbers: 0 > 2"-1
—Ex.: (41),, represented using 8-bits as "00101001".

e Signed integers:

—Not straightforward!
— Sign-magnitude representation

— Biased representation
— Two’s complement representation

Representations of 4-Bit Signed Integers

Decimal Sign-Magnitude Twos Complement Biased
Representation Representation Representation Representation
([+8 (— . = /1111
+7 0111 0111 1110
+6 0110 0110 1101
+5 0101 0101 1100
+4 0100 0100 1011
+3 0011 0011 1010
+2 0010 0010 1001
+1 0001 0001 1000
\ +0 \ 0000 L 0000 L 0111
(-0 (1000 ([— =

1001 1111 0110
1010 1110 0101

1101 0100
1100 0011
1011 0010
1110 0001
1111 0000
= G

Sign-Magnitude Representation

o Left most bit is sign bit.
» 0" means positive. "1” means negative.

o Rest of the bits represent the magnitude.

e Example:
»+18 = 00010010
»—-18 = 10010010

e Range of n-bit Numbers: -(2"1 - 1) = 2n1-1,

e Problems:
» Need to consider both sign & magnitude in arithmetic.

» Two representations of zero (+0 and -0)
— More difficult to test for 0!
— One wasted bit combination!!

Biased Representation

e A bias is added to the binary value of the number.
> Bias = 2"1 — 1 (if numbers are represented by n bits).

e Example:
»+18 = 00010010 + 01111111 = 10010001
»—18 = -00010010 + 01111111 = 01101101

e Range of n-bit Numbers: -(2"1 - 1) = 201,
e Problems:

» Need to compensate for the bias in arithmetic (by
adding/subtracting a value to/from result)!!

» Example: Suppose numbers are represented using 4 bits.
2,0+ 1,,=1001 + 1000 = 10001 =» Wrong result!!
Result is biased twice =» subtract one bias from the result
10001 — 0111 = 1010 = 34,

Two’s Complement Representation

Like sign-magnitude representation, leftmost bit
is used as a sign bit.

Differs from sign-magnitude representation in
how the remaining bits are interpreted.

Positive number: convert to binary
Negative number: 2's complement
Example: 8-bit 2's complement representation

+3 = 00000011 -1 = 11111111
+2 = 00000010 -2 = 11111110
-3 =11111101

+1 = 00000001
+0 = 00000000

n-bit Two’s Complement Representation

e Suppose we want to represent a set of signed integer
numbers using n bits.

e Then, we have 2" different combinations = we can
represent 2" different numbers.
1. Represent the number: 0 by the combination: “00...0".
> We now have 2"-1 different combinations left.

2. Represent each positive number: +A by a combination (whose
value is): A = positive integers: 1, 2, ..., 2" '—1 are
represented by combinations: 1, 2, .., 2" '—1.

3. Represent each negative number: —A by a combination (whose
value is): 2" — A & negative integers: -2"', -2"'+1, ..., -1
are represented by combinations: 2", 2" +1, ..., 2"-1.

e Range of representable numbers is: —2""* 2 2" 7' -1,

Characteristics of 2’s Comp. Rep. & Arithmetic

Consider n-bit 2’s complement representation

Range

_Zn-l to 211-1 —1

Number of Representations
of Zero

One

C
Equivalent to: 2" - x,,
Negation

—

T’s compi ment
—Take the Boolean complement o

each bit

W

an unsigned integer.

positive number, then add 1 to the resulting bit pattern viewed as

Expansion of Bit Length

of the original sign bit.

Add additional bit positions to the left and fill in with the value

Overflow Rule

has the opposite sign.

If two numbers with the same sign (both positive or both
negative) are added, then overflow occurs if and only if the result

Subtraction Rule

to A.

To subtract B from A, take the twos complement of 5 and add it

Benefits

e One representation of zero.
o Arithmetic works easily (see later).
e Negating is fairly easy
— 345 = 00000011
— Boolean (one’s) complement gives 11111100

— Add 1 to LSB 11111101

— This is equivalent to 28 — 3 = 253 =11111101
-

@mpleme@

Conversion between 2’s Comp. & Decimal

IS I S I I I

Value Box

[[w e s [a 2]
-ﬂﬂﬂﬂﬂ--
—128 =125
Result obtained using value box is correct because:
=» Sign bitis 1
= Number = -(2's comp. of 10000011)

= -(28 - 10000011)
= -125

Conversion Between Lengths

e Positive numbers = pack with leading zeros
= +18 = 00010010
= +18 = 00000000 00010010

e Negative numbers =» pack with leading ones
= -18 = 11101110
= -18 = 11111111 11101110

e j.e. pack with MSB (sign bit) = Sign extension

Addition and Subtraction
e Addition = Normal binary addition.

» Monitor sign bit for overflow.

e Subtraction =» Take two’s complement of
subtrahend and add to minuend
> A-B=A+ (-B)

e S0 we only need addition and complement
circuits.

Why Addition of Numbers in 2’s Comp. Works?

e Two positive number
— Normal binary addition if no overflow.

e Two negative numbers: —A and —B
— Represent —A as 2" — A
— Represent —B as 2" - B Extra bit = ignored
— Do the addition: Result = (2/ - A) + (2" — B)
=2 @-(AB)D
chomp. of (A+B) = —(A+B)
e One positive and one negative: A and —B

— Represent A as A
— Represent —B as 2" — B 2’s comp. of (-A+B) = (A—B)

—Result=A+2”—B

Addition of Numbers in 2’s Comp. Rep.

1001
+0101

1110

0011
+0100

0111

0101
+0100

1001

—7
5
-2

3
4
7
5
4
O

1100
+0100
10000

1100
+1111
11011

1001
+1010

verflow 10011

4-bit 2’s comp. representation

-4

Overflow

Geometric Depiction of 2’s Comp. Integers

subtraction addition subtraction addition
of positive of positive of positive of positive
numbers 0000 numbers numbers

1111 0001

numbers

0010

1101 0011

110) —fp—"= = e e e cm e e e = =a 0100 010...0
1010 0110
0111
i L b b 0 i 4 1 3 193 39 14 L4) -
rrrrrrrrrrrrrrrrirfril > i i >
9-8-7-6-5-4-3-2-1012345¢617829 -1

A1
(a) 4-bit numbers (b) n-bit numbers

Binary Addition/Subtraction Logic Circuit.

Yp-1 Y1 Yo
| | . Add/Sub
control
Xn—l Zn—l xn—l rl 0
J 5/7_1 , l l l Zn_l
Ove rfl_ow " n-bit adder B
Logic n o

£ e

e Addition = Add/sub control = 0.
e Subtraction = Add/sub control = 1

1-Bit Addition (Full Adder)

X, Y Carry-in ¢, Sums;, Carry-outc;,,
0 0 0 0 0
0 0 | 1 0
0 | 0 | 0 ,
0 1 1 0 1 At the stage 7.
| 0 0 1 0 Input:
1 0 1 0 1 x;is M bit of x
1 1 0 0 1 y;is " bit of y
1 1 1 1 1 c;1s carry-in from
stage 1
Si = XYt X6+ X Y6ty =50y, &g Qutput:

S;1s the sum
c;,; carry-out to

Cis1 = ;6 +x.C + XY,

E le: .
R stage /+1
7 g 1] 1 |a X
= +6 = 4+00:11|1 10|00 C }'OUt__,Dy;D‘__CaITy-m
Citl Ci
13 1 11 § |0 S

Legend for stage i

Addition Logic for a Single Stage

Civi Full adder C
i+] - (FA) e 3y
R
fl,
Y A

Full Adder (FA): Symbol for the complete
circuit for a single stage of addition.

An n-bit Ripple-Carry Adder

Xn-1 Yn-1 #3 I X0 Yo
Cii-1 3
€, - FA e FA - FA - C
Sn-1 81 50
Most significant bit Least significant bit
(MSB) position (LSB) position

e (Cascade n full adder (FA) blocks to form a n-bit adder.
e Carries propagate or ripple through this cascade = r-bit

ripple carry adder.
e Carry-in ¢, into the LSB position provides a convenient

way to perform subtraction.

Cascade of k n-bit Adders

Ykn-1 Ykn-1 Xon—1 Yan-1 *n Yn Xn-1 Yn—1 %o Yo
. . En .
i n-bit .. n-bit - n-bit -
Ckn adder adder adder 0
Skn—1 S (k=1)n Son—1 Sn Sn-1 S0

e Kk n-bit numbers can be added by cascading & r-bit

adders.
e Each n-bit adder forms a block, so this is cascading of

blocks.
e (arries ripple or propagate through blocks =» Blocked

Ripple Carry Adder.

Computing the Add Time

T

Consider ¢ stage:

] FA 7 ¢, *c, IS avallable after 2 gate delays.
| *S, IS available after 1 gate delay.
S0
Sum y; Carry
Do - j
X, — o’ o

]
/ !
* a\pl' | *
C
V. % >— S. X i+1
-1 ‘ I Cl

Computing the Add Time (cont.)

Cascade of 4 Full Adders, or a 4-bit adder
A A O (SN LG SO L &
FA FA , FA n FA ‘70

| | | |

S3 Sy S1 So

e 5, available after 1 gate delay, ¢ available after 2 gate delays.

e s available after 3 gate delays, ¢ available after 4 gate delays.
e s available after 5 gate delays, ¢ available after 6 gate delays.
e s available after 7 gate delays, c, available after 8 gate delays.

For an n-bit ripple-carry adder:

S, ;1s available after 2n-1 gate delays
c,i1s available after 2n gate delays.

Fast Addition

Recall the equations:
S =X Y, D¢
Cia = XY X6 T VY6
Second equation can be written as:
Ciy =X Y; +(% @ Y;)C
We can write:
.. =G +RC
where G, =x.y, and P =X @V,
* G;Is called generate function.
* P;is called propagate function.

* G;and P;are computed only from x;and y;and not ¢;
=>» they can be computed in one gate delay from Xand Y.

Carry-Lookahead Adder - Main Idea

¢, =G+ P,
¢, = Gi—l + B—lci—l
= ¢, =G +P(G_ +F_c_)

continuing
= =G, +P(G_ + F_(G_, + F_,¢,,))
until

¢, =G +bBG_ +BP_ G _,+..+ BE_.BG,+ FE_,...Fc,

All carries can be obtained 3 gate delays from x, yand c,,
* One gate delay for P;and G;
« Two gate delays in the AND-OR circuit for c;,,

All sums can be obtained 1 gate delay after the carries are computed.
Independent of n, n-bit addition requires only 4 gate delays.
This is called Carry Lookahead adder.

Carry-Lookahead adder - Basic Cell

X Vi

|
‘

B cell

Bit-stage cell

Carry-Lookahead Adder - Structure

X3)3 X2 N X1 N X0 Yo
€3 €2 9|
B cell e B cell . B cell = B cell -—o— ()
S3 82 51 SO

G3| |P3 Gy | P2 G| |P Go| | Po

| A | | A | Yy v | A |

Carry-lookahead logic -
Gl P;

4-bit carry-lookahead adder

Carry-Lookahead adder - Limitation

e Performing r+bit addition in 4 gate delays
independent of n7is good only theoretically
because of fan-in constraints!

¢, =G+ FPG +PP G, +.+FPF .EG+FPE . .Fc,
e Last AND gate and OR gate require a fan-in of
(n+1) for an n-bit adder.
—For a 4-bit adder (n=4) fan-in of 5 is required.
—Practical limit for most gates!

e In order to add operands longer than 4 bits, we
can cascade 4-bit Carry-Lookahead adders.

=» Blocked Carry-Lookahead adder.

Blocked Carry-Lookahead adder - Main Idea

e Carry-out from a 4-bit block can be given as:
¢, =G, +RG,+ BP.G + ERERG, + EF FRc,
e Rewrite this as: ¢, =G + Py ¢,
—Where: Gj =G, + P3G, + P3P,G+P,P,RG,
—And: P} =R,P,RP,
—Known as: high-order generate/propagate functions.

e To build a 16-bit blocked carry-lookahead adder:

—Use a carry-lookahead logic block to connect the high-
order generate/propagate functions from 4 4-bit
carry-lookahead adders such that:

ci6 = G3 + PG, + PyP,G| + P3P,PG, + PyP,P|P\cy

Blocked Carry-Lookahead adder - Structure

X15-12 Y15-12 X11-8 Yi1-8 X7.4 Y7-4 X3.0 V3.0

€12 cg €4
Clg <+ 4-bit adder e 4-bit adder < 4-bit adder j=— 4-bit adder [*+—9— €o
$15-12 511-8 57-4 3.0
Gi| |P} Gi| |P} Gl | [P} G4l [P
| A | vy vy vy
Carry-lookahead logic -
Gl Py

e Time taken to produce s;:
=1 (X YD PG +2(PG> PG
+2(P,G> c,) +2(c,= ce)
+ 1 (¢5=> s;5) = 8 gate delays

Reading Material

e Stallings, Chapter 10:
—Pages 320-331

e Hamacher, Chapter 9:
—Pages 336-344

