
CSE 321b

Computer Organization (2)

(2)الحاسب تنظيم

3rd year, Computer Engineering

Spring 2018

Lecture #7

Dr. Ahmed Amer Shahin

http://www.aashahine.faculty.zu.edu.eg
Credits to Dr. Ahmed Abdul-Monem & Dr. Hazem Shehata for the slides

http://www.aashahine.faculty.zu.edu.eg/

Adminstrivia

• Lecture include material from another textbook:

—”Computer Organization and Embedded Systems”,
C. Hamacher, Z. Vranesic, S. Zaky, N. Manjikian (6th

Ed.)

Chapter 10. Computer Arithmetic

Outline

• Integer Representation
—Sign-Magnitude, Two’s Complement, Biased

• Integer Arithmetic
—Negation, Addition, Subtraction

—Multiplication, Division

• Floating-Point Representation
—IEEE 754

• Floating-Point Arithmetic
—Addition, Subtraction

—Multiplication, Division

—Rounding

Arithmetic & Logic Unit (ALU)

• The unit that does all the calculations!

• Everything else in computer is there to bring
data to ALU and take results back out.

• It can handle both integers & real (floating point)
numbers.

—Note: In the past, Floating-Point Unit (FPU) used to be
separate from ALU (off-chip)  math co-processor!!

Data Results

overflow,

carry, …
Operation

Integer Representation

• General-case number: –548.923

• Only have 0 & 1 to represent everything!

—No minus sign!!

—No radix point (period)!!!

• Unsigned (i.e., always positive) integers:

—Straightforward  represent integer value in binary!

—An n-bit word can represent the numbers: 0  2n-1

—Ex.: (41)10 represented using 8-bits as “00101001”.

• Signed integers:

—Not straightforward!

– Sign-magnitude representation

– Biased representation

– Two’s complement representation

Representations of 4-Bit Signed Integers
+

x
1

0
-x

1
0

x
2

x
2

2
4

-1
+

 x
2 (2

4
-1
–

1
)


x
2

2
4
–

x
2

1

2

1

2

2

1

2

1

Sign-Magnitude Representation

• Left most bit is sign bit.

➢ “0” means positive. “1” means negative.

• Rest of the bits represent the magnitude.

• Example:

➢+18 = 00010010

➢–18 = 10010010

• Range of n-bit Numbers: -(2n-1 - 1)  2n-1 - 1.

• Problems:

➢Need to consider both sign & magnitude in arithmetic.

➢Two representations of zero (+0 and –0)

– More difficult to test for 0!

– One wasted bit combination!!

Biased Representation

• A bias is added to the binary value of the number.

➢Bias = 2n-1 – 1 (if numbers are represented by n bits).

• Example:

➢+18 = 00010010 + 01111111 = 10010001

➢–18 = -00010010 + 01111111 = 01101101

• Range of n-bit Numbers: -(2n-1 – 1)  2n-1.

• Problems:

➢Need to compensate for the bias in arithmetic (by
adding/subtracting a value to/from result)!!

➢Example: Suppose numbers are represented using 4 bits.

210 + 110 = 1001 + 1000 = 10001  Wrong result!!

Result is biased twice  subtract one bias from the result

10001 – 0111 = 1010 = 310

Two’s Complement Representation

• Like sign-magnitude representation, leftmost bit
is used as a sign bit.

• Differs from sign-magnitude representation in
how the remaining bits are interpreted.

• Positive number: convert to binary

• Negative number: 2’s complement

• Example: 8-bit 2’s complement representation

+3 = 00000011

+2 = 00000010

+1 = 00000001

+0 = 00000000

–1 = 11111111
–2 = 11111110
–3 = 11111101

n-bit Two’s Complement Representation

• Suppose we want to represent a set of signed integer

numbers using n bits.

• Then, we have 2
n

different combinations  we can

represent 2
n

different numbers.

1. Represent the number: 0 by the combination: “00…0”.

➢ We now have 2
n
–1 different combinations left.

2. Represent each positive number: +A by a combination (whose

value is): A  positive integers: 1, 2, …, 2
n–1

–1 are

represented by combinations: 1, 2, .., 2
n–1

–1.

3. Represent each negative number: –A by a combination (whose

value is): 2n – A  negative integers: –2
n–1

, –2
n–1

+1, …, –1

are represented by combinations: 2
n–1

, 2
n–1

+1, …, 2
n
–1.

• Range of representable numbers is: –2
n – 1

 2
n – 1

– 1.

Characteristics of 2’s Comp. Rep. & Arithmetic

1’s complement

Consider n-bit 2’s complement representation

Equivalent to: 2n – x2

Benefits

• One representation of zero.

• Arithmetic works easily (see later).

• Negating is fairly easy

— 310 = 00000011

— Boolean (one’s) complement gives 11111100

— Add 1 to LSB 11111101

— This is equivalent to 28 – 3 = 253 =11111101

2’s complement of 3

Conversion between 2’s Comp. & Decimal

Value Box

0

= +3

• Result obtained using value box is correct because:

 Sign bit is 1

 Number = -(2’s comp. of 10000011)

= -(28 - 10000011)

= -125

Conversion Between Lengths

• Positive numbers  pack with leading zeros

▪ +18 = 00010010

▪ +18 = 00000000 00010010

• Negative numbers  pack with leading ones

▪ -18 = 11101110

▪ -18 = 11111111 11101110

• i.e. pack with MSB (sign bit)  Sign extension

Addition and Subtraction

• Addition  Normal binary addition.
➢ Monitor sign bit for overflow.

• Subtraction  Take two’s complement of

subtrahend and add to minuend

➢ A – B = A + (–B)

• So we only need addition and complement
circuits.

Why Addition of Numbers in 2’s Comp. Works?

• Two positive number

— Normal binary addition if no overflow.

• Two negative numbers: –A and –B

— Represent –A as 2n – A

— Represent –B as 2n – B

— Do the addition: Result = (2n – A) + (2n – B)

= 2n + [2n–(A+B)]

• One positive and one negative: A and –B

— Represent A as A

— Represent –B as 2n – B

— Result = A + 2n – B = 2n – (–A + B)

Extra bit  ignored

2’s comp. of (A+B)  –(A+B)

2’s comp. of (–A+B)  (A–B)

Addition of Numbers in 2’s Comp. Rep.

4-bit 2’s comp. representation

Geometric Depiction of 2’s Comp. Integers

Binary Addition/Subtraction Logic Circuit.

• Addition  Add/sub control = 0.

• Subtraction  Add/sub control = 1

Overflow

Logic

xn–1 zn–1

sn–1
zn–1

V

At the stage i:

Input:
xi is ith bit of x
yi is ith bit of y
ci is carry-in from

stage i-1

Output:
si is the sum

ci+1 carry-out to

stage i+1

1-Bit Addition (Full Adder)

Full Adder (FA): Symbol for the complete

circuit for a single stage of addition.

Addition Logic for a Single Stage

Sum Carry

An n-bit Ripple-Carry Adder

• Cascade n full adder (FA) blocks to form a n-bit adder.
• Carries propagate or ripple through this cascade  n-bit

ripple carry adder.
• Carry-in c0 into the LSB position provides a convenient

way to perform subtraction.

Cascade of k n-bit Adders

• k n-bit numbers can be added by cascading k n-bit
adders.

• Each n-bit adder forms a block, so this is cascading of
blocks.

• Carries ripple or propagate through blocks  Blocked

Ripple Carry Adder.

Consider 0th stage:

x0 y0

c0c1

s0

FA •c1 is available after 2 gate delays.

•s1 is available after 1 gate delay.

Computing the Add Time

Sum Carry

x0 y0

s2

FA

x0 y0x0 y0

s1

FAc2

s0

FAc1c3
c0

x0 y0

s3

FA
c4

Cascade of 4 Full Adders, or a 4-bit adder

For an n-bit ripple-carry adder:

sn-1 is available after 2n-1 gate delays

cn is available after 2n gate delays.

Computing the Add Time (cont.)

• s0 available after 1 gate delay, c1 available after 2 gate delays.

• s1 available after 3 gate delays, c2 available after 4 gate delays.

• s2 available after 5 gate delays, c3 available after 6 gate delays.

• s3 available after 7 gate delays, c4 available after 8 gate delays.

Recall the equations:

iiiiiii

iiii

cycxyxc

cyxs





1

Second equation can be written as:

iiiiii cyxyxc)(1 

We can write:

iiiiii

iiii

yxPandyxGwhere

cPGc



1

Fast Addition

• Gi is called generate function.

• Pi is called propagate function.

• Gi and Pi are computed only from xi and yi and not ci

 they can be computed in one gate delay from X and Y.

ci1  Gi  Pici

ci  Gi1  Pi1ci1

 ci1  Gi  Pi(Gi1  Pi1ci1)

continuing

 ci1  Gi  Pi(Gi1  Pi1(Gi 2  Pi 2ci2))

until

ci1 Gi  PiGi1  PiPi1Gi2  .. PiPi1..P1G0  PiPi1...P0c0

Carry-Lookahead Adder – Main Idea

• All carries can be obtained 3 gate delays from x, y and c0.

• One gate delay for Pi and Gi

• Two gate delays in the AND-OR circuit for ci+1

• All sums can be obtained 1 gate delay after the carries are computed.

• Independent of n, n-bit addition requires only 4 gate delays.

• This is called Carry Lookahead adder.

Bit-stage cell

Carry-Lookahead adder – Basic Cell

4-bit carry-lookahead adder

Carry-Lookahead Adder – Structure

• Performing n-bit addition in 4 gate delays
independent of n is good only theoretically
because of fan-in constraints!

• Last AND gate and OR gate require a fan-in of
(n+1) for an n-bit adder.

—For a 4-bit adder (n=4) fan-in of 5 is required.

—Practical limit for most gates!

• In order to add operands longer than 4 bits, we
can cascade 4-bit Carry-Lookahead adders.

 Blocked Carry-Lookahead adder.

c
i1

G
i
 P

i
G
i1

 P
i
P
i1
G
i2

 .. P
i
P
i1
..P

1
G
0
 P

i
P
i1
...P

0
c0

Carry-Lookahead adder – Limitation

• Carry-out from a 4-bit block can be given as:

• Rewrite this as:

—Where:

—And:

—Known as: high-order generate/propagate functions.

• To build a 16-bit blocked carry-lookahead adder:

—Use a carry-lookahead logic block to connect the high-
order generate/propagate functions from 4 4-bit
carry-lookahead adders such that:

c4  G3 P3G2  P3P2G1  P3P2P1G0  P3P2P1P0c0

Blocked Carry-Lookahead adder – Main Idea

0004 cPGc II 

01231232330 GPPPGPPGPGG I 

01230 PPPPP I 

• Time taken to produce s15

= 1 (X,Y  P,G) + 2 (P,G  PI,GI)

+ 2 (PI,GI
 c12) + 2 (c12 c15)

+ 1 (c15 s15) = 8 gate delays

Blocked Carry-Lookahead adder – Structure

Reading Material

• Stallings, Chapter 10:

—Pages 320-331

• Hamacher, Chapter 9:

—Pages 336-344

