
CSE 321b

Computer Organization (2)

(2)الحاسب تنظيم

3rd year, Computer Engineering

Spring 2018

Lecture #6

Dr. Ahmed Amer Shahin

http://www.aashahine.faculty.zu.edu.eg
Credits to Dr. Ahmed Abdul-Monem & Dr. Hazem Shehata for the slides

http://www.aashahine.faculty.zu.edu.eg/

Chapter 7. Input / Output

Outline

• External Devices

—Types

—Structure

• I/O Modules

—Function

—Structure

• I/O Techniques

—Programmed I/O

—Interrupt-Driven I/O

—Direct Memory Access

• I/O Channels & Processors

Terms

• Essential Computer Units

—CPU and Memory

• Peripheral (or External or I/O) devices

—Any device attached to a computer in order to
increase its functionality.

– Input: keyboard, mouse, scanner, … etc.

– Output: printers, speakers, … etc.

– Input and output: hard disk, modem, … etc.

• I/O (Input/Output) Operations

—Transfer of data to/from computer from/to peripheral
device (done by program, operation, or device).

—Input: from a device to the computer

—Output: from the computer to a device.

Input/Output Problems

• There is a wide variety of peripherals!

—Different methods of operation (H/W).

—Delivering different amounts of data.

—At different speeds (which are also different from
CPU and memory).

—In different formats (e.g., word length).

• Conclusion: Hard to connect such variety of
different devices directly to same Bus!!

• Solution: I/O Module

I/O Module

Interface to CPU and Memory

Interface to one or more peripheral devices

Types of Peripherals

• Human readable

—Screen, printer, keyboard, … etc.

• Machine readable

—Magnetic disk, tape, … etc.

• Communication

—Modem, Network Interface Card (NIC), Wireless
Network Adaptor, … etc.

External Device

Peripheral (External) Device

• Control Signals
— Send data to module,

receive data from
module, send status,
position disk head.

• Status Signals
— READY, NOT READY, …

• Buffer
— Temporarily hold data

being transferred. Size:
x bytes  x Kbytes!!

• Transducer
— Converts energy:

electrical  other.

• Control logic
— Controls operation.

I/O Module

To/from computer

Computer

Outside world

Examples: Keyboard/Monitor, and Disk Drive

• Keyboard (input)

—A key is pressed.

—Transducer translates signal into ASCII.

—ASCII is transmitted to I/O module in the computer.

—Text can be stored as ASCII in the computer.

• Monitor (output)

—Computer sends ASCII to I/O module. I/O module
sends ASCII to external device (monitor).

—Transducer at the monitor sends electronic signals to
display the character.

• Hard Disk Drive (input/output)

—Head moves in and out across disk surface.

—Transducer converts magnetic patterns to/from bits.

Functions of I/O Module

1. Control & Timing.

2. CPU Communication.

3. Device Communication.

4. Data Buffering.

5. Error Detection.

1. Control & Timing

• I/O includes control & timing requirement to
coordinate the flow of traffic between internal
resources (CPU, MM, …) and external devices.

• Ex.: Transfer data from input device to CPU:

1. CPU checks I/O module device status.

2. I/O module returns status.

3. If ready, CPU requests data transfer (command to
I/O module).

4. I/O module gets data from external device.

5. I/O module transfers data to CPU.

• If transfer goes through bus, each CPU/module
interaction may involve 1+ bus arbitrations.

2. CPU Communication

• CPU communication involves the following:

—Command decoding

– Module accepts commands from CPU on control lines.

– Command parameters can be sent over data line.

– e.g., SEEK track in a disk drive: SEEK command sent
on control lines and track # sent on data lines.

—Address recognition

– One unique address for each peripheral it controls.

—Data exchange

– Between CPU and device over the data bus.

—Status reporting

– BUSY, READY, or some error conditions.

3. Device Communication

• I/O module must also be able to do device
communication:

—Commands

—Status information

—Data

4. Data Buffering (Speed Mismatch)

5. Error Detection

• Mechanical and electrical malfunctions

—Report to CPU.

—e.g., paper jam, bad disk sector/track.

• Unintentional changes to transmitted bit pattern

—Detected using error-detecting codes.

—e.g., parity bit (ASCII).

I/O Module Structure

• St./Ctrl. registers: hold device status or accept control info from CPU.
• CPU issues commands to I/O module via control lines.
• Some control lines are also used by I/O module for bus arbitration.
• Module controlling more than 1 device has a set of unique addresses.

Interface to

System Bus

Interface to

External Device

I/O Module Design Decisions

• I/O module lets CPU view a wide range of
devices in a simple-minded way.

• Module may hide device properties from CPU:

—Quite complex module design.

—Simple CPU commands (e.g., render object).

—Referred to as I/O channel (I/O processor).

—Common in mainframes.

• Module may reveal device properties to CPU:

—Relatively simple module design.

—Detailed CPU commands (e.g., rewind tape).

—Referred to as I/O controller (device controller).

—Common in microcomputers.

Chapter 7. Input / Output (Cont.)

Outline

• External Devices

—Types

—Structure

• I/O Modules

—Function

—Structure

• I/O Techniques

—Programmed I/O

—Interrupt-Driven I/O

—Direct Memory Access

• I/O Channels & Processors

Input Output Techniques

• Programmed I/O.

• Interrupt-driven I/O.

• Direct Memory Access (DMA).

Programmed I/O

• CPU (program) has direct control over I/O.

— Issuing commands

— Sensing status

— Transferring data

• CPU issues a command to I/O module.

• CPU checks status bits periodically.

—This process is called: pooling.

• I/O module performs operation.

• I/O module sets status bits.

• CPU transfers data: device  memory.

• Notes:

— I/O module does not inform CPU directly.

– I/O module does not interrupt CPU.

— CPU waits for I/O operation to complete.

– Disadvantage: Wasting CPU time!

I/O Commands vs. I/O Instructions

• I/O Command

—Signal: issued by (or Sent from) CPU to I/O module.

—Types:

– Control: activate device & tell it what to do (e.g., rewind tape).

– Test: check status (e.g., is power on? is error detected?)

– Read/Write: transfer data CPU  buffer  peripheral

• I/O instruction

—Step in program: fetched from MM & executed by CPU.

—To execute an I/O instruction: (1) CPU issues address of
I/O module & device, (2) CPU issues an I/O command.

—Instruction form depends on how devices are addressed.

• In programmed I/O, there is a one-to-one mapping
between I/O instructions and I/O commands.

Addressing Techniques of I/O Devices

• Two ways to assign addresses to I/O devices:

1. Memory-mapped I/O

– Devices & memory share same address space.

– I/O looks just like memory read/write.

– No special instructions for I/O  “load”, “store”, … etc.

– Bus has one Read & one Write control line.

– Pros: Large selection of memory access instructions.

– Cons: Valuable memory address space is used up!

2. Isolated I/O

– Separate address space for devices.

– Special instructions for I/O  “in”, “out”, “test”, … etc.

– Need two Rd & two Wr control lines.

– Pros: efficient use of memory address space.

– Cons: Not so many I/O instructions.

I/O Mapping - Example

Interrupt-Driven I/O

• Purpose: To overcome CPU waiting.

• No repeated CPU checking of device.

• CPU issues command and moves on to do other
useful work.

• I/O module interrupts CPU when ready.

Interrupt-Driven I/O

• CPU issues read command

• I/O module gets data from
peripheral whilst CPU does
other work.

• I/O module interrupts CPU.

• CPU reads data from I/O
module.

• CPU writes data to memory.

CPU Viewpoint

• Issue read command.

• Do other work.

• Check for interrupt at end of each instruction
cycle.

• If interrupted:

—Save context (registers).

—Process interrupt.

– Fetch data (from module) & store (to memory)

Simple Interrupt Processing

Changes in Mem. & Reg.’s upon Interrupt

1

2

3

4

5

1

3

2

4

5

6

Identifying Interrupting Module

• How to identify the module issuing the interrupt?

1. Different line for each module

– Limits number of devices.

2. Software poll (single line)

– CPU asks each module in turn  time consuming!!

– e.g., Send TESTI/O  Set address lines  Check status reg.

3. Daisy chain or Hardware poll (single line)

– All modules share a single interrupt request line.

– Interrupt acknowledge sent down a chain.

– Module (that issued interrupt signal) places its vector on bus.

– CPU uses vector to identify handler routine.

4. Bus Master (single line)

– Module must claim the bus before it can raise interrupt.

– e.g., PCI & SCSI.

Multiple Interrupts & Priorities

• How to deal with simultaneous interrupts?

• Solution: prioritize interrupts!

1. With multiple lines:

– Each interrupt line has a priority.

– Higher priority lines can interrupt lower priority lines.

2. With software polling:

– Priority determined by order in which modules are polled.

3. With daisy chain:

– Priority determined by order of modules on chain.

– Closer modules have higher priority.

4. With bus arbitration:

– Only current master can interrupt.

– Priority is defined by the bus arbitration protocol.

Example - PC Bus

• 80386 has one interrupt line!

• To handle more interrupts,
connect 1 (or more) interrupt
arbiter  Intel 8259.

• Intel 8259 has 8 intrpt. lines.

• Sequence of events:

— 8259 accepts interrupts.

— 8259 determines priority.

— 8259 signals 8086 (raises INTR
line).

— CPU Acknowledges.

— 8259 puts correct vector on
data bus.

— CPU processes interrupt.

Direct Memory Access (DMA)

• Interrupt driven and programmed I/O require
active CPU intervention.

—CPU tests and services a device.

– Transfer rate is limited (depending on CPU availability)!!

—Many instructions are executed for every I/O.

– CPU is tied up in managing an I/O transfer!!

• DMA is a more efficient technique (when
transferring large volumes of data, i.e., blocks).

—Additional module on the system bus  DMA controller.

—DMA controller mimics CPU and takes over the bus to
transfer the data with no CPU intervention!

DMA Operation

• CPU tells DMA controller:

—Type of Operation (Rd/Wr).

—Address of device.

—Starting address of a data
block in memory.

—Amount of data to be
transferred.

• CPU carries on with other work.

• DMA controller performs the transfer.

• DMA controller sends interrupt when finished.

Typical DMA Controller

1

2

3

3

4

4

5

5

6

DMA Transfer modes

• DMA controller transfers data from/to MM over
the system bus.

• DMA controller takes over bus for a bus cycle to
transfer data by one of the following techniques:

—Use bus only when CPU not using it: transparent mode.

—Force CPU to suspend operation temporarily  DMA

steals bus cycles from CPU: cycle stealing mode.

• Notice this is not an interrupt!

—CPU does not switch context.

• CPU gets suspended just before it accesses bus.

—i.e. before an operand or data fetch or a data write.

• Slows down CPU. Faster than CPU doing transfer!

DMA and Interrupt Breakpoints During an

Instruction Cycle

DMA Configurations (1)

• Features: single-bus, detached DMA controller.

• DMA module acts as a surrogate processor.

• DMA module uses programmed I/O.

• Each transfer uses system bus twice.

—I/O device  DMA controller  memory.

• CPU is suspended twice per transfer.

• DMA controller has no I/O interfaces.

• Inexpensive yet inefficient!

DMA Configurations (2)

• Features: single-bus, integrated DMA controller.

• Controller may support more than one device.

• Each transfer uses system bus once.

—DMA controller  memory.

• CPU is suspended once per transfer.

• DMA controller has one or more I/O interfaces.

• Efficient yet expensive!

DMA Configurations (3)

• Features: separate I/O bus.

—Connecting all DMA-capable devices.

• Each transfer uses system bus once.

—DMA controller  memory

• CPU is suspended once.

• DMA controller has only one I/O interface.

• Easily expandable configuration.

Evolution of I/O function

1. No I/O module.

— CPU directly controls i/o device.

2. I/O module responding to CPU.

— Programmed I/O.

3. I/O module interrupting CPU.

— Interrupt-driven I/O.

4. I/O module accessing memory.

— Direct-memory access (DMA).

5. I/O module executing program.

— I/O channel.

6. I/O module executing program from local memory.

— I/O processor, .e.g., GPU.

• NOTE: On occasions, no distinction is made between
the terms: I/O channel and I/O processer!!!

I/O Channels

• I/O channels:

—an extension to the DMA concept

—able to execute I/O instructions

• I/O channel equipped with special-purpose
processor, referred to as I/O processor (IOP)!!!!

• CPU instructs I/O channel to do the transfer

—I/O processor fetches and executes I/O program
from memory.

• I/O channel does the entire transfer.

• Improves speed

—Takes load off CPU.

—Dedicated processor is faster.

A Channel I/O Configuration

• “The Essentials of Computer Organization and Architecture”, Null and Lobur

I/O Channel Architecture – Selector

• Channel controls multiple high-speed devices.

• At any given time, channel is dedicated to data
transfer with only one of these devices.

• Each device/set of devices is/are handled by a
controller (I/O module).

I/O Channel Architecture – Multiplexor

• Handles multiple
low-speed devices at
the same time.

• A byte multiplexor
accepts or transmits
characters as fast as
possible to multiple
devices.

• Example: 3 devices with different
rates and individual streams
A1A2A3A4 ..., B1B2B3B4 . . ., and
C1C2C3C4 might result in the
character stream
A1B1C1A2C2A3B2C3A4 …

Reading Material

• Stallings, Chapter 7:

—Pages 222-237

—Pages 240-243

—Pages 246-248

