CSE 321b
Computer Organization (2)

(2) wlal) ptas

Spring 2018
_ecture #6

Dr. Ahmed Amer Shahin

http://www.aashahine.faculty.zu.edu.eg
Credits to Dr. Ahmed Abdul-Monem & Dr. Hazem Shehata for the slides

http://www.aashahine.faculty.zu.edu.eg/

Chapter 7. Input / Output

Outline

e External Devices
—Types
—Structure

e I/O Modules

—Function
—Structure

e I/O Techniques
—Programmed I/0
—Interrupt-Driven I/O
—Direct Memory Access

e I/O Channels & Processors

Terms

e Essential Computer Units
—CPU and Memory

e Peripheral (or External or I/O) devices

—Any device attached to a computer in order to
increase its functionality.
— Input: keyboard, mouse, scanner, ... etc.
— Output: printers, speakers, ... etc.
— Input and output: hard disk, modem, ... etc.

e I/O (Input/Output) Operations

—Transfer of data to/from computer from/to peripheral
device (done by program, operation, or device).

—Input: from a device to the computer
—Qutput: from the computer to a device.

Input/Output Problems

e There is a wide variety of peripherals!
—Different methods of operation (H/W).
—Delivering different amounts of data.

—At different speeds (which are also different from
CPU and memory).

—1In different formats (e.g., word length).

e Conclusion: Hard to connect such variety of
different devices directly to same Bus!!

e Solution: I/0 Module

1/0 Module

Address Lines A
Svstem
Iata Lines B};
Control Lines J

/O Module

Links to
peripheral
devices

Types of Peripherals

e Human readable
—Screen, printer, keyboard, ... etc.

e Machine readable
—Magnetic disk, tape, ... etc.

e Communication

—Modem, Network Interface Card (NIC), Wireless
Network Adaptor, ... etc.

Peripheral (External) Device

To/from computer

e Control Signals

— Send data to module, 1/0 Module
receive data from —— " _
module, send status, signals from s to prabus
pOSitiOn disk head. /0 module /0 maodule /'O module
e Status Signals
— READY, NOT READY, ... Y L4
e Buffer B
— Temporarily hold data

being transferred. Size:
X bytes =» x Kbytes!!

e Transducer
— Converts energy:

Transducer

electrical €= other.

e Control logic
— Controls operation.

Data (device-unique
to and from
¥ environment

Outside world

Examples: Keyboard/Monitor, and Disk Drive

e Keyboard (input)
—A key is pressed.
—Transducer translates signal into ASCII.
—ASCII is transmitted to I/O module in the computer.
—Text can be stored as ASCII in the computer.

e Monitor (output)

—Computer sends ASCII to I/O module. I/O module
sends ASCII to external device (monitor).

—Transducer at the monitor sends electronic signals to
display the character.

e Hard Disk Drive (input/output)
—Head moves in and out across disk surface.
—Transducer converts magnetic patterns to/from bits.

Functions of 1/0 Module

1. Control & Timing.

2. CPU Communication.
3. Device Communication.
4. Data Buffering.
5. Error Detection.

1. Control & Timing

e I/0O includes control & timing requirement to
coordinate the flow of traffic between internal
resources (CPU, MM, ...) and external devices.

e EX.: Transfer data from input device to CPU:
1. CPU checks I/O module device status.
2. I/O module returns status.

3. If ready, CPU requests data transfer (command to
I/O module).

4. I/O module gets data from external device.
5. I/O module transfers data to CPU.

o If transfer goes through bus, each CPU/module
interaction may involve 1* bus arbitrations.

2. CPU Communication

e CPU communication involves the following:

—Command decoding
— Module accepts commands from CPU on control lines.
— Command parameters can be sent over data line.

—e.g., SEEK track in a disk drive: SEEK command sent
on control lines and track # sent on data lines.

—Address recognition
— One unique address for each peripheral it controls.

—Data exchange
— Between CPU and device over the data bus.

—Status reporting
— BUSY, READY, or some error conditions.

3. Device Communication

e I/O module must also be able to do device
communication:
—Commands
—Status information
—Data

4. Data Buffering (Speed Mismatch)

T e e P
Graphics display #‘) o 2\©
Hard disk * O
Ethemet# e ab\e ‘\00?
Optical disk !“\ “5\‘“ o «\QN F
5:; 3 oel o (\ —

10! 10° 10° 104 10F 10% 107 10% 10°
Data Rate (bps)

5. Error Detection

e Mechanical and electrical malfunctions
—Report to CPU.
—e.g., paper jam, bad disk sector/track.

e Unintentional changes to transmitted bit pattern

—Detected using error-detecting codes.
—e.qg., parity bit (ASCII).

1/0 Module Structure

o St./Ctrl. registers: hold device status or accept control info from CPU.
e CPU issues commands to I/O module via control lines.
e Some control lines are also used by I/O module for bus arbitration.
e Module controlling more than 1 device has a set of unique addresses.
Interface to Interface to
System Bus Externa:l Device
A \ \
Data
—>I Data Registers |47 —p E:“E[_'“al
Data Device Status
Lines Iu{frl':':lce
—PI Status/Control Registers el Control
T -
Address
Lines « > . <+ External Data
I | Device
Logic Interface Status
E{.L'.litr[l.:; < - Logic Control

1/0 Module Design Decisions

e I/O module lets CPU view a wide range of
devices in a simple-minded way.

e Module may hide device properties from CPU:
—Quite complex module design.
—Simple CPU commands (e.g., render object).
—Referred to as I/0 channel (I/0O processor).
—Common in mainframes.

e Module may reveal device properties to CPU:
—Relatively simple module design.
—Detailed CPU commands (e.g., rewind tape).
—Referred to as I/0 controller (device controller).
—Common in microcomputers.

Chapter 7. Input / Output (Cont)

Outline

e External Devices
—Types
—Structure

e 1/O Modules

—Function
—Structure

e I/O Techniques
—Programmed I/0O

—Interrupt-Driven I/O
—Direct Memory Access

e I/O Channels & Processors

Input Output Techniques

e Programmed I/O.
e Interrupt-driven I/O.
e Direct Memory Access (DMA).

No Interrupts Use of Interrupts
I/O-to-memory :
transfer through CPU Programmed I/O | Interrupt-driven I/O
Direct I/O-to-memory Direct Memory

transfer Access (DMA)

Programmed 1/O

e CPU (program) has direct control over I/O.
— Issuing commands
— Sensing status
— Transferring data

e CPU issues a command to I/O module.

e CPU checks status bits periodically.
—This process is called: pooling.

e I/O module performs operation.

e I/O module sets status bits.

e CPU transfers data: device €=» memory.

* Notes:
— I/O module does not inform CPU directly.
— I/O module does not interrupt CPU.
— CPU waits for I/O operation to complete.
— Disadvantage: Wasting CPU time!

— command to

[ssue Read
CPU — /O

[/O module

Not

ready E

Read status
of I/O
module

/0 — CPU

Error
condition

Ready

Read word

from 1/O /O — CPU
Module

Write word
into memory

CPU — memory

No

Yes

Next instruction

1/0 Commands vs. 1/0 Instructions

e /O Command
—Signal: issued by (or Sent from) CPU to I/O module.
—Types:
— Control: activate device & tell it what to do (e.g., rewind tape).

— Test: check status (e.g., is power on? is error detected?)
— Read/Write: transfer data CPU €= buffer €=» peripheral

e [/O instruction
—Step in program: fetched from MM & executed by CPU.

—To execute an I/O instruction: (1) CPU issues address of
I/O module & device, (2) CPU issues an I/O command.

—Instruction form depends on how devices are addressed.

e In programmed I/O, there is a one-to-one mapping
between I/0 instructions and I/O commands.

Addressing Techniques of 1/0O Devices

e Two ways to assign addresses to I/O devices:

1. Memory-mapped I/O
— Devices & memory share same address space.
— I/O looks just like memory read/write.
— No special instructions for I/O = “load”, “store”, ... etc.
— Bus has one Read & one Write control line.
— Pros: Large selection of memory access instructions.
— Cons: Valuable memory address space is used up!

2. Isolated I/O
— Separate address space for devices.
— Special instructions for I/O = “in”, “out”, “test”, ... etc.
— Need two Rd & two Wr control lines.
— Pros: efficient use of memory address space.
— Cons: Not so many I/O instructions.

1/0 Mapping - Example

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
. . Keyboard input status
Keyboard input data register 517 and control register
L 1 = ready L Settolto
0 = busy start read
ADDRESS INSTRUCTION OPERAND COMMENT
200 Load AC i B Load accumulator
Store AC 517 Initiate keyboard read
202 Load AC 517 Get status byte
Branch if Sign = (202 Loop until ready
Load AC 516 Load data byte
(a) Memory-mapped /O
ADDRESS INSTRUCTION OPERAND COMMENT
200 Load I/0 5 Initiate keyboard read
201 Test 1/0 5 Check for completion
Branch Not Ready 201 Loop until complete
In 5 Load data byte

(h) Isolated 1/0

Interrupt-Driven 1/O

e Purpose: To overcome CPU waiting.
e No repeated CPU checking of device.

e CPU issues command and moves on to do other
useful work.

e I/O module interrupts CPU when ready.

Interrupt-Driven 1/O

CPU issues read command

I/O module gets data from
peripheral whilst CPU does
other work.

I/O module interrupts CPU.

CPU reads data from I/O
module.

CPU writes data to memory.

"PU = 1/O
Do something
else

[ssue Read
command to
[/O module

Read status
of /O
module

=== Interrupt

/0 — CPU

Error

condition

Ready

Read word
from [/O
Module

/0 — CPU

Write word
into memory

CPU — memory

Next instruction

CPU Viewpoint

e Issue read command.
e Do other work.

e Check for interrupt at end of each instruction
cycle.

o If interrupted:
—Save context (registers).

—Process interrupt.
— Fetch data (from module) & store (to memory)

Hardware

A

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Simple Interrupt Processing

Software

N

1

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Changes in Mem. & Reg.’s upon Interrupt

T-M - y T-M [NETF
; .
Control ' Control (
| — >
stack | stack (
|
: | : | BEFA
Program
counter
v | Starfls Y | Sturt
Interrupt General [nterrupt- General
service registers service registers
oo routine T Routine
e ety
"+ . F+ L
r+i Stuck
pointer
Processor

Processor
‘ r-M
N +"\‘| 3 User's \ *‘\[' 3 rser's
' progrim ' program

Main Main
memory memory
(a) Interrupt occurs after instruction

(b) Return from interrupt
at location N

Identifying Interrupting Module

e How to identify the module issuing the interrupt?

1. Different line for each module
— Limits number of devices.

2. Software poll (single line)
— CPU asks each module in turn = time consuming!!
— e.g., Send TESTI/O =» Set address lines = Check status reg.

3. Daisy chain or Hardware poll (single line)
— All modules share a single interrupt request line.
— Interrupt acknowledge sent down a chain.
— Module (that issued interrupt signal) places its vector on bus.
— CPU uses vector to identify handler routine.

4. Bus Master (single line)
— Module must claim the bus before it can raise interrupt.
—e.g., PCI & SCSI.

Multiple Interrupts & Priorities

e How to deal with simultaneous interrupts?

e Solution: prioritize interrupts!

1. With multiple lines:
— Each interrupt line has a priority.
— Higher priority lines can interrupt lower priority lines.

2. With software polling:
— Priority determined by order in which modules are polled.

3. With daisy chain:

— Priority determined by order of modules on chain.
— Closer modules have higher priority.

4. With bus arbitration:

— Only current master can interrupt.
— Priority is defined by the bus arbitration protocol.

80386 has one interrupt line!

To handle more interrupts,
connect 1 (or more) interrupt
arbiter = Intel 8259.

Intel 8259 has 8 intrpt. lines.

Sequence of events:
— 8259 accepts interrupts.
— 8259 determines priority.

— 8259 signals 8086 (raises INTR
line).

— CPU Acknowledges.

— 8259 puts correct vector on
data bus.

— CPU processes interrupt.

82C59A

inter:

rupt

controller

I External devic

e 00 |—> IR0

I External device

01 J—|IR1

IR2
IR3
IR4
IRS
IR6

[External device

07 }—{IR7

INT

Slave
82CS9A

inter

rupt

controller

| External device 08

—— IR0

| External device 09

IR2
IR3
IR4
IRS
IR6

| External device

15 |—{IR7

INT

Master
82C59A

interr

upt

controller

L
Slave

82Cs
nterr
contro

YA

upt
ller

IR0

> IR1

IR2
1IR3
IR4
IRS
IR6
IR7

INT

80386
processor

> INTR

| External devic

e 56 |— IR0

| External device 57

IR2
IR3
IR4
IRS
IR6

[External device

63 —={IR7

INT

Direct Memory Access (DMA)

e Interrupt driven and programmed I/O require
active CPU intervention.

—CPU tests and services a device.
— Transfer rate is limited (depending on CPU availability)!!

—Many instructions are executed for every I/0O.
— CPU is tied up in managing an I/0O transfer!!
e DMA is a more efficient technique (when
transferring large volumes of data, i.e., blocks).
—Additional module on the system bus = DMA controller.

—DMA controller mimics CPU and takes over the bus to
transfer the data with no CPU intervention!

DMA Operation

e CPU tells DMA controller:
—Type of Operation (Rd/Wr).

—Address of device.

—Starting address of a data

block in memory.

—Amount of data to be
transferred.

[ssue Read “PU — DMA
block command Do something
to IO module

else

Read status

= == Interrupt
of DMA

DMA — CPU

module

Next instruction

e CPU carries on with other work.
e DMA controller performs the transfer.
e DMA controller sends interrupt when finished.

Typical DMA Controller

v, Data
count
. Data
Data lines - > .
register

“——=> Address
Address lines register

Request to DMA >
Acknowledge from DMA

Interrupt — Clﬂﬂl.l“ﬂl
Read - 0gIc
Write -

DMA Transfer modes

e DMA contro
the system

e DMA contro

ler transfers data from/to MM over
OUS.

ler takes over bus for a bus cycle to

transfer data by one of the following techniques:
—Use bus only when CPU not using it: transparent mode.

—Force CPU

to suspend operation temporarily = DMA

steals bus cycles from CPU: cycle stealing mode.

e Notice this is not an interrupt!
—CPU does not switch context.

e CPU gets suspended just before it accesses bus.

—i.e. before

an operand or data fetch or a data write.

B¢ Slows down CPU. Faster than CPU doing transfer!e

DMA and Interrupt Breakpoints During an
Instruction Cycle

Time
-
Instruction cycle
Processor Processor Processor Processor Processor Processor
cycle cycle cycle cycle cycle cycle
Fetch Decode Fetch Execute Store Process
instruction | instruction operand instruction result interrupt
A A
DMA Interrupt

breakpoints breakpoint

DMA Configurations (1)

e Features: single-bus, detached DMA controller.

e DMA module acts as a surrogate processor.

e DMA module uses programmed I/O.

8¢ Each transfer uses system bus twice.
—I/O device = DMA controller = memory.

B¢ CPU is suspended twice per transfer.
g -* DMA controller has no I/O interfaces.
gre Inexpensive yet inefficient! @8

Processor DMA 1/0 . . . 1/0

Memory

DMA Configurations (2)

e Features: single-bus, integrated DMA controller.
e Controller may support more than one device.

g+ Each transfer uses system bus once.
—DMA controller = memory.

g CPU is suspended once per transfer.
B¢ DMA controller has one or more I/0 interfaces.

g=* Efficient yet expensive!

Processor

DMA

N

1/0

DMA

/ﬂ

1/0

\

Memory

/O

DMA Configurations (3)

e Features: separate I/O bus.
—Connecting all DMA-capable devices.

o Each transfer uses system bus once.
—DMA controller = memory

e CPU is suspended once.
e DMA controller has only one I/O interface.
e Easily expandable configuration.

System bus

Processor DMA Memory

I/O bus

1/0 /0O /O

Evolution of 1/0 function

1. No I/O module.
— CPU directly controls i/o device.

2. I/O module responding to CPU.
— Programmed 1/0.

3. I/O module interrupting CPU.
— Interrupt-driven I/O.

4. I/O module accessing memory.
— Direct-memory access (DMA).

5. I/O module executing program.
— I/O channel.

6. I/O module executing program from local memory.
— I/O processor, .e.g., GPU.

e NOTE: On occasions, no distinction is made between
the terms: I/O channel and I/O processer!!!

1/0 Channels

e I/O channels:
—an extension to the DMA concept
—able to execute I/0O instructions

e [/O channel equipped with special-purpose
processor, referred to as I/O processor (IOP)!!!!

e CPU instructs I/O channel to do the transfer

—I/O processor fetches and executes I/O program
from memory.

e /O channel does the entire transfer.

o Improves speed
—Takes load off CPU.
—Dedicated processor is faster.

A Channel 1/O0 Configuration

Main
Memory

Memory
Bus

CPU

Terminal Printer Local Area
Controller Network
I/O Processor
/0 Bus (IOP) _
Disk
I/O I/O Processor Disk
Bridge (IOP)
Tape
I/O Processor
(IGP) Disk
Tape Disk Printer

* “The Essentials of Computer Organization and Architecture”, Null and Lobur

1/0 Channel Architecture - Selector

e Channel controls multiple high-speed devices.

e At any given time, channel is dedicated to data
transfer with only one of these devices.

e Each device/set of devices is/are handled by a
controller (I/O module).

Data and
address channel

to main memory
X Selector
channel
E—
Control signal /O /0
path to CPU controller controller

-

1/0 Channel Architecture - Multiplexor

e Handles multiple
low-speed devices at _ Deaand

address channel

the same t|me. to main memory
e A byte multiplexor

—_—

aCCGDtS or tl’a nsmItS Control signal

Multiplexor
channel

characters as fastas ™"
possible to multiple
devices.

o Example: 3 devices with different
rates and individual streams
A1A2A3A4 ..., B1B2B3B4 . . ., and
C1C2C3C4 might result in the
character stream
A1B1C1A2C2A3B2C3A4 ...

1I/0
controller

/0
controller

Sk

1/0

controller |

1/0
controller

-

Reading Material

e Stallings, Chapter 7:
—Pages 222-237
—Pages 240-243
—Pages 246-248

