CSE 321b Computer Organization (2) (2) تنظيم الحاسب

3rd year, Computer Engineering Spring 2018 Lecture #9

Dr. Ahmed Amer Shahin

http://www.aashahine.faculty.zu.edu.eg

Credits to Dr. Ahmed Abdul-Monem & Dr. Hazem Shehata for the slides

Chapter 10. Computer Arithmetic (*Cont.***)**

Outline

- Integer Representation

 Sign-Magnitude, Two's Complement, Biased
- Integer Arithmetic
 - -Negation, Addition, Subtraction
 - -Multiplication, Division
- Floating-Point Representation —IEEE 754
- Floating-Point Arithmetic
 - -Addition, Subtraction
 - -Multiplication, Division
 - -Rounding

Real Numbers

- Numbers with fractions.
- Could be done in pure binary

 $-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625$

- Where is the binary point?
- Fixed? 0010110100,111010
 - -Very large/small numbers cannot be represented.
 - -e.g., 0.0000001, 1000000000
 - -Fractional part of the quotient in dividing very large numbers will be lost.
- Moving/floating?
 - -How do you show where it is?
 - $-976,000,000,000,000 = 9.76 \times 10^{14}$
 - $-0.0000000000000976 = 9.76 \times 10^{-14}$ s
- Can do the same with binary numbers. What do we need to store?

Floating-Point Representation

$\pm S \times 2^E$

ເອັ້ອ Exponent Significand (Mantissa)

- The base 2 is the same for all numbers \rightarrow need not be stored.
- Number is stored in a binary word with 3 fields:
 - Sign: +/-
 - Significand S
 - Exponent E
- Normal number: most significant digit of the significand (mantissa) is nonzero → <u>1</u> for base 2 (binary).
- What number to store in the significand field? 0.001011
 Mormal form: 1.011 × 2⁻³ → Store only 011 in the significand field!
- There is an implicit 1 to the left of the binary point (normalized).
- Exponent indicates place value (floating-point position).

Floating-Point Representation Biased Exponent

- k-bit unsigned exponent E' ranges from ∂ to 2^k-1
 e.g., 8-bit exponent: 0 ≤ E' ≤ 255
- The stored exponent E' is a biased exponent $-E' = E + (2^{k-1}-1)^{bias}$
 - e.g., for 8-bit exponent, E' = E + 127
 - --1**?** $7 \le E \le$ **?**28
- Why?

- -127 0 128 255 →
- —Nonnegative floating-point numbers can be treated as unsigned integers for comparison purposes.
- -This is not true for 2's comp. or sign-magnitude representations.

Normalization

- FP numbers are usually normalized.
 - —i.e., exponent is adjusted so that leading bit (MSB) of mantissa is non-zero, i.e., 1.
 - -c.f., Scientific notation where numbers are normalized to give a single digit before the decimal point, e.g. 3.123×10^3 .
- Since the MSB of mantissa is always 1, there is no need to store it!

Floating-Point Examples

FP Ranges (32-bit)

- 32-bit FP number, 8-bit exponent, 23-bit mantissa.
- Largest +ve number (2-2⁻²³) × 2¹²⁸

-Largest true exponent: 128 0.111...11

-Largest mantissa: $1 + (1 - 2^{-23}) = 2 - 2^{-23}$

Smallest +ve number 2⁻¹²⁷

-Smallest true exponent: -127

-Smallst mantissa: 1

- Smallest –ve number (2–2²³) × 2¹²⁸
- Largest –ve number –2⁻¹²⁷
- Accuracy
 - —The effect of changing LSB of mantissa.
 - -23-bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - -About 6 decimal places.

Expressible Numbers (32-bit)

(a) Twos Complement Integers

(b) Floating-Point Numbers

Density of Floating Point Numbers

- 32-bit FP number \rightarrow 2³² different values represented.
- No more individual values are represented with floating-point numbers. Numbers are just spread out.
- Numbers represented in the FP representation are not spaced evenly along the line number. Why?
- Range-precision tradeoff
 - —More bits for exponent \rightarrow wider range & less precision
 - —Reason: there is a fixed number of values that can be represented!

IEEE 754

- Standard for floating-point representation.
- Adopted 1985 and revised 2008.
- IEEE 754-2008 defines many FP formats for different purposes:

Format	Format Type			
	Arithmetic Format	Basic Format	Interchange Format	
binary16			X	
binary32	Х	Х	Х	
binary64	Х	Х	Х	
binary128	Х	Х	Х	
binary{k} $(k = n \times 32 \text{ for } n > 4)$	Х		X	
decimal64	Х	X	Х	
decimal128	Х	X	Х	
decimal{k} (k = $n \times 32$ for $n > 4$)	Х		X	
extended precision	Х			
extendable precision	Х			

IEEE 754 - Binary32/64/128 Formats

IEEE 754 - Binary32/64/128 Interpretations

	Sign	Biased Exponent	Fraction	Value	
positive zero	0	0	0	0	
negative zero	1	0	0	-0	
plus infinity	0	all 1s	0	œ	
minus infinity	1	all 1s	0	$-\infty$	
quiet NaN	0 or 1	all 1s	$\neq 0$; first bit = 1	qNaN	
signaling NaN	0 or 1	all 1s	$\neq 0$; first bit = 0	sNaN	
positive normal nonzero	0	0 < e < 255	f	$2^{e-127}(1.f)$	
negative normal nonzero	1	0 < e < 255	f	$-2^{e-127}(1.f)$	32
positive subnormal	0	0	$f \neq 0$	$2^{-126}(0.f)$	34
negative subnormal	1	0	$f \neq 0$	$-2^{-126}(0.f)$	
positive normal nonzero	0	0 < e < 2047	f	$2^{e-1023}(1.f)$	
negative normal nonzero	1	0 < e < 2047	f	$-2^{e-1023}(1.f)$	
positive subnormal	0	0	$f \neq 0$	$2^{-1022}(0.f)$	64
negative subnormal	1	0	$f \neq 0$	$-2^{-1022}(0.f)$	
positive normal nonzero	0	0 < e < 32767	f	$2^{e-16383}(1.f)$	
negative normal nonzero	1	0 < e < 32767	f	$-2^{e-16383}(1.f)$	100
positive subnormal	0	0	$f \neq 0$	$2^{-16382}(0.f)$	
negative subnormal	1	0	$f \neq 0$	$-2^{-16382}(0.f)$	

IEEE 754 - Binary32/64/128 Parameters

Parameter	Format		
	Binary32	Binary64	Binary128
Storage width (bits)	32	64	128
Exponent width (bits)	8	11	15
Exponent bias	127	1023	16383
Maximum exponent	127	1023	16383
Minimum exponent	-126	-1022	-16382
Approx normal number range (base 10)	$10^{-38}, 10^{+38}$	$10^{-308}, 10^{+308}$	$10^{-4932}, 10^{+4932}$
Trailing significand width (bits)*	23	52	112
Number of exponents	254	2046	32766
Number of fractions	2 ²³	2 ⁵²	2 ¹¹²
Number of values	1.98×2^{31}	1.99×2^{63}	$1.99 imes 2^{128}$
Smallest positive normal number	2^{-126}	2^{-1022}	2^{-16362}
Largest positive normal number	$2^{128} - 2^{104}$	$2^{1024} - 2^{971}$	$2^{16384} - 2^{16271}$
Smallest subnormal magnitude	2^{-149}	2^{-1074}	2^{-16494}

Note: *not including implied bit and not including sign bit

• NaN:

-Symbolic entity encoded in FP format

- —Types: Signaling (sNaN) or Quiet (qNaN)
- -Both types have the same format:

S= 0 or 1 E= 1111...11

F ≠ 0000..00

-F distinguishes between the two types:

 $-F=0xxxx..xx \rightarrow sNaN, F=1xxxx..xx \rightarrow qNaN$

- Signaling NaN:
 - -Signals an invalid operation exception whenever it appears as an operand. Ex.: uninitialized variables

• Quite NaN:

-Propagates without signaling exceptions.

Operation	Quiet NaN Produced By	
Any	Any operation on a signaling NaN	
Add or subtract	Magnitude subtraction of infinities: $(+\infty) + (-\infty)$ $(-\infty) + (+\infty)$ $(+\infty) - (+\infty)$ $(-\infty) - (-\infty)$	
Multiply	$0 imes \infty$	
Division	$\frac{0}{0}$ or $\frac{\infty}{\infty}$	
Remainder	<i>x</i> REM 0 or ∞ REM <i>y</i>	
Square root	\sqrt{x} , where $x < 0$	

IEEE 754 - Effect of Subnormal Numbers

(a) 32-Bit format without subnormal numbers

(b) 32-Bit format with subnormal numbers

FP Arithmetic +/-

- Algorithm:
 - 1. Check for zeros.
 - 2. Align significands (adjusting exponents).
 - **3.** Add or subtract significands.
 - 4. Normalize result.
 - 5. Round result.

FP Addition & Subtraction Flowchart

Reading Material

- Stallings, Chapter 10:
 - —Pages 341-352
 - —Pages 356-358