CSE 321b

Computer Organization (2) تنظيم الحاسب (2)

$3^{\text {rd }}$ year, Computer Engineering

 Spring 2018 Lecture \#9

Dr. Ahmed Amer Shahin

http://www.aashahine.faculty.zu.edu.eg

Credits to Dr. Ahmed Abdul-Monem \& Dr. Hazem Shehata for the slides

Chapter 10. Computer Arithmetic (Cont.)

Outline

- Integer Representation
-Sign-Magnitude, Two's Complement, Biased
- Integer Arithmetic
-Negation, Addition, Subtraction
-Multiplication, Division
- Floating-Point Representation
—IEEE 754
- Floating-Point Arithmetic
-Addition, Subtraction
-Multiplication, Division
—Rounding

Real Numbers

- Numbers with fractions.
- Could be done in pure binary
$-1001.1010=2^{3}+2^{0}+2^{-1}+2^{-3}=9.625$
- Where is the binary point?
- Fixed? 0010110100.111010
-Very large/small numbers cannot be represented.
- e.g., 0.0000001, 10000000000
-Fractional part of the quotient in dividing very large numbers will be lost.
- Moving/floating?
-How do you show where it is?
$-976,000,000,000,000=9.76 \times 10^{14}$
$-0.0000000000000976=9.76 \times 10^{-14}$ store?

Floating-Point Representation

$\pm S \times 2^{\mathrm{E}}$

礁
 Exponent

Significand (Mantissa)

The base 2 is the same for all numbers \rightarrow need not be stored.
Number is stored in a binary word with 3 fields:

- Sign: +/-
- Significand S
- Exponent E
- Normal number: most significant digit of the significand (mantissa) is nonzero $\rightarrow \underline{1}$ for base 2 (binary).
- What number to store in the significand field? 0.001011 - Normal form: $1.011 \times 2^{-3} \rightarrow$ Store only 011 in the significand field!
- There is an implicit 1 to the left of the binary point (normalized).
- Exponent indicates place value (floating-point position).

Floating-Point Representation Biased Exponent

$\pm S \times 2^{\mathrm{E}}$

Significand (Mantissa)

- k-bit unsigned exponent E^{\prime} ranges from 0 to $2^{k}-1$ - e.g., 8-bit exponent: $0 \leq \mathrm{E}^{\prime} \leq 255$
- The stored exponent E^{\prime} is a biased exponent
$-E^{\prime}=E+\left(\left(2^{k-1}-1\right)^{\text {bias }}\right.$
- e.g., for 8-bit exponent, $\mathrm{E}^{\prime}=\mathrm{E}+127$
$--127 \leq \mathrm{E} \leq \mathrm{P} 28$
- Why?

-Nonnegative floating-point numbers can be treated as unsigned integers for comparison purposes.
-This is not true for 2's comp. or sign-magnitude representations.

Normalization

- FP numbers are usually normalized.
-i.e., exponent is adjusted so that leading bit (MSB) of mantissa is non-zero, i.e., 1.
-c.f., Scientific notation where numbers are normalized to give a single digit before the decimal point, e.g. 3.123×10^{3}.
- Since the MSB of mantissa is always 1 , there is no need to store it!

Floating-Point Examples

$\left\lvert\, \begin{gathered} \text { Biased } \\ \text { Exponent } \end{gathered}\right.$	

23 bits

Significand (Mantissa)

$\frac{1717698.56}{1.638125 \times 2^{20}}$
$1.1010001 \times 2^{10100}$
$\frac{-1717698.56}{-1.638125 \times 2^{20}}$
$-1.1010001 \times 2^{10100}$

\ldots
1.638125×2^{-20}
$1.1010001 \times 2^{-10100}$

Positive \rightarrow sign bit $=0$
$\mathrm{E}^{\prime}=\mathrm{E}+127=10100+1111111=10010011$ Mantissa $=10100010000000000000000$
01001001110100010000000000000000

Negative \rightarrow sign bit $=1$
$\mathrm{E}^{\prime}=\mathrm{E}+127=10100+1111111=10010011$
Mantissa $=10100010000000000000000$
11001001110100010000000000000000
Positive \rightarrow sign bit $=0$
$\mathrm{E}^{\prime}=\mathrm{E}+127=-10100+1111111=01101011$ Mantissa $=10100010000000000000000$
001101011101000100000000000000000

FP Ranges (32-bit)

- 32-bit FP number, 8-bit exponent, 23-bit mantissa.
- Largest +ve number $\left(2-2^{-23}\right) \times 2^{128}$
-Largest true exponent: $128 \quad 0.111 \ldots 11$
-Largest mantissa: $1+\left(1-2^{-23}\right)=2-2^{-23}$
- Smallest +ve number $\mathbf{2}^{-127}$
-Smallest true exponent: -127
-Smallst mantissa: 1
- Smallest -ve number $-\left(2-2^{23}\right) \times 2^{128}$
- Largest -ve number -2^{-127}
- Accuracy
-The effect of changing LSB of mantissa.
-23-bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
-About 6 decimal places.

Expressible Numbers (32-bit)

(a) Twos Complement Integers

(b) Floating-Point Numbers

Density of Floating Point Numbers

- 32-bit FP number $\rightarrow 2^{32}$ different values represented.
- No more individual values are represented with floating-point numbers. Numbers are just spread out.
- Numbers represented in the FP representation are not spaced evenly along the line number. Why?
- Range-precision tradeoff
- More bits for exponent $\boldsymbol{\rightarrow}$ wider range \& less precision
-Reason: there is a fixed number of values that can be represented!
-To increase both range and precision $\boldsymbol{\rightarrow}$ use more bits!!!

IEEE 754

- Standard for floating-point representation.
- Adopted 1985 and revised 2008.
- IEEE 754-2008 defines many FP formats for different purposes:

Format	Format Type		
	Arithmetic Format	Basic Format	Interchange Format
binary16			X
binary32	X	X	X
binary64	X	X	X
binary128	X	X	
binary $\{k\}$ $(\boldsymbol{k}=\boldsymbol{n} \times \mathbf{3 2}$ for $\boldsymbol{n}>\mathbf{4)}$	X	X	X
decimal64	X	X	X
decimal128	X	X	
decimal $\{k\}$ $(\boldsymbol{k}=\boldsymbol{n} \times \mathbf{3 2}$ for $\boldsymbol{n}>\mathbf{4)}$	X	X	
extended precision	X		
extendable precision			

IEEE 754 - Binary32/64/128 Formats

Binary32 (Single-precision)

Binary64 (Double-precision)

IEEE 754 - Binary32/64/128 Interpretations

	Sign	Biased Exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	all 1s	0	∞
minus infinity	1	all 1s	0	$-\infty$
quiet NaN	0 or 1	all 1s	$\neq 0$; first bit $=1$	qNaN
signaling NaN	0 or 1	all 1s	$\neq 0$ f first bit $=0$	fNaN
positive normal nonzero	0	$0<\mathrm{e}<255$	f	$2^{\mathrm{e}-127}(1 . \mathrm{f})$
negative normal nonzero	1	$0<\mathrm{e}<255$	f	$-2^{\mathrm{e}-127}(1 . \mathrm{f})$
positive subnormal	0	0	$\mathrm{f} \neq 0$	$2^{-126}(0 . \mathrm{f})$
negative subnormal	1	0	$\mathrm{f} \neq 0$	$-2^{-126}(0 . \mathrm{f})$
positive normal nonzero	0	$0<\mathrm{e}<2047$	f	$2^{\mathrm{e}-1023}(1 . \mathrm{f})$
negative normal nonzero	1	$0<\mathrm{e}<2047$	f	$-2^{\mathrm{e}-1023}(1 . \mathrm{f})$
positive subnormal	0	0	$\mathrm{f} \neq 0$	$2^{-1022}(0 . \mathrm{f})$
negative subnormal	1	0	$\mathrm{f} \neq 0$	$-2^{-1022}(0 . \mathrm{f})$
positive normal nonzero	0	$0<\mathrm{e}<32767$	f	$2^{\mathrm{e}-16383}(1 . \mathrm{f})$
negative normal nonzero	1	$0<\mathrm{e}<32767$	f	$-2^{\mathrm{e}-16383}(1 . \mathrm{f})$
positive subnormal	0	0	$\mathrm{f} \neq 0$	$2^{-16382}(0 . \mathrm{f})$
negative subnormal	1	0	$\mathrm{f} \neq 0$	$-2^{-16382}(0 . \mathrm{f})$

IEEE 754 - Binary32/64/128 Parameters

Parameter	Format		
	Binary32	Binary64	Binary128
Storage width (bits)	32	64	128
Exponent width (bits)	8	11	15
Exponent bias	127	1023	16383
Maximum exponent	127	1023	16383
Minimum exponent	-126	-1022	-16382
Approx normal number range (base 10)	$10^{-38}, 10^{+38}$	$10^{-308}, 10^{+308}$	$10^{-4932}, 10^{+4932}$
Trailing significand width (bits)*	23	52	112
Number of exponents	254	2046	32766
Number of fractions	2^{23}	2^{52}	2^{112}
Number of values	1.98×2^{31}	1.99×2^{63}	1.99×2^{128}
Smallest positive normal number	2^{-126}	2^{-1022}	2^{-16362}
Largest positive normal number	$2^{128}-2^{104}$	$2^{1024}-2^{971}$	$2^{16384}-2^{16271}$
Smallest subnormal magnitude	2^{-149}	2^{-1074}	2^{-16494}

Note: *not including implied bit and not including sign bit

IEEE 754 - NaNs

- NaN:
-Symbolic entity encoded in FP format
-Types: Signaling (sNaN) or Quiet (qNaN)
-Both types have the same format:

$$
\begin{array}{l|l|l}
S=0 \text { or } 1 & E=1111 . . .11 & F \neq 0000 . .00 \\
\hline
\end{array}
$$

-F distinguishes between the two types:
$-\mathrm{F}=\mathbf{0 x x x x} . \mathrm{xx} \rightarrow \mathrm{sNaN}, \mathrm{F}=\mathbf{1 x x x x} . . \mathrm{xx} \rightarrow \mathrm{qNaN}$

- Signaling NaN:
-Signals an invalid operation exception whenever it appears as an operand. Ex.: uninitialized variables
- Quite NaN:
-Propagates without signaling exceptions.

IEEE 754-Quiet NaN

Operation	Quiet NaN Produced By
Any	Any operation on a signaling NaN
Add or subtract	Magnitude subtraction of infinities: $(+\infty)+(-\infty)$ $(-\infty)+(+\infty)$ $(+\infty)-(+\infty)$ $(-\infty)-(-\infty)$
Multiply	$0 \times \infty$
Division	$\frac{0}{0}$ or $\frac{0}{\infty}$
Remainder	x REM 0 or ∞ REM y
Square root	\sqrt{x}, where $x<0$

IEEE 754 - Effect of Subnormal Numbers

(a) 32-Bit format without subnormal numbers

(b) 32-Bit format with subnormal numbers

FP Arithmetic +/-

- Algorithm:

1. Check for zeros.
2. Align significands (adjusting exponents).
3. Add or subtract significands.
4. Normalize result.
5. Round result.

FP Addition \& Subtraction Flowchart

Reading Material

- Stallings, Chapter 10:
—Pages 341-352
—Pages 356-358

